This year the most prestigious prize in medical sciences, the Lasker Award, has been presented to the three scientists who discovered the ubiquitin pathway: Aaron Ciechanover, Avram Hershko, and Alexander Varshavsky [Nature Med. 6 (2000) 1073^1081]. During a time when the scientific community was focused on understanding how proteins were synthesized, they intently pursued the novel idea that cells were programmed to selectively destroy proteins. Their work led to the identification of an elaborate system of protein degradation targeting a myriad of cellular substrates. A small protein called ubiquitin is at the center of this process. Although the ubiquitin pathway was first described in the early 1980s, it has only more recently advanced to the forefront of basic research as a significant regulatory network within the cell. The field continues to grow as new ubiquitination enzymes and novel functions of this system are identified. Scientists are focused on elucidating the mechanisms by which cells deploy the ubiquitin pathway to control levels of selected proteins, such as cell cycle regulatory proteins, transcription factors and signaling molecules. Accelerated or decelerated rates of degradation of particular substrates participate in the genesis of many human diseases. Thus, understanding the mechanisms that confer specificity to the ubiquitin system will allow the development of novel therapeutic approaches to target aberrations in this pathway underlying tumorigenesis and other human pathologies. ß
The ubiquitin pathway is involved in the proteolytic turnover of many short-lived cellular regulatory proteins. Since selective degradation of substrates of this system requires the covalent attachment of a polyubiquitin chain to the substrates, degradation could be counteracted by de-ubiquitinating enzymes (or isopeptidases) which selectively remove the polyubiquitin chain. Unp is a human isopeptidase with still poorly understood biological functions. Here, we show that cellular Unp speci®cally interacts with the retinoblastoma gene product (pRb). Oncogene (2001) 20, 5538 ± 5542.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.