Plasma membrane furrow formation is crucial in cell division and cytokinesis. Furrow formation in early syncytial Drosophila embryos is exceptionally rapid, with furrows forming in as little as 3.75 min. Here, we use 4D imaging to identify furrow formation, stabilization, and regression periods, and identify a rapid, membrane-dependent pathway that is essential for plasma membrane furrow formation in vivo. Myosin II function is thought to provide the ingression force for cytokinetic furrows, but the role of membrane trafficking pathways in guiding furrow formation is less clear. We demonstrate that a membrane trafficking pathway centered on Ras-like protein A (RalA) is required for fast furrow ingression in the early fly embryo. RalA function is absolutely required for furrow formation and initiation. In the absence of RalA and furrow function, chromosomal segregation is aberrant and polyploid nuclei are observed. RalA localizes to syncytial furrows, and mediates the movement of exocytic vesicles to the plasma membrane. Sec5, which is an exocyst complex subunit and localizes to ingressing furrows in wild-type embryos, becomes punctate and loses its cortical association in the absence of RalA function. Rab8 also fails to traffic to the plasma membrane and accumulates aberrantly in the cytoplasm in RalA disrupted embryos. RalA localization precedes F-actin recruitment to the furrow tip, suggesting that membrane trafficking might function upstream of cytoskeletal remodeling. These studies identify a pathway, which stretches from Rab8 to RalA and the exocyst complex, that mediates rapid furrow formation in early Drosophila embryos.
Macroautophagy is a cellular process whereby the cell sequesters and recycles cytosolic constituents in a lysosome-dependent manner. It has also been implicated in a number of disorders, including cancer and neurodegeneration. Although a previous report that AGS3 over-expression promotes macroautophagy suggests a stimulatory role of AGS3 in this process, we have found that knock-down of AGS3, unexpectedly, also induces macroautophagy, indicating an inhibitory function of endogenous AGS3 in macroautophagy. Interestingly, AGS3 phosphorylation is decreased upon induction of mammalian target of rapamycin (mTOR)-dependent macroautophagy. Moreover, unlike wild-type AGS3, over-expression of an AGS3 mutant lacking this modification fails to enhance macroautophagic activity. These observations imply that AGS3 phosphorylation may participate in the modulation of macroautophagy.
One of the most fundamental changes in cell morphology is the ingression of a plasma membrane furrow. The Drosophila embryo undergoes several cycles of rapid furrow ingression during early development that culminate in the formation of an epithelial sheet. Previous studies have demonstrated the requirement for intracellular trafficking pathways in furrow ingression; however, the pathways that link compartmental behaviors with cortical furrow ingression events are unclear. Here, we show that Rab8 has striking dynamic behaviors in vivo. As furrows ingress, cytoplasmic Rab8 puncta are depleted and Rab8 accumulates at the plasma membrane in a location that coincides with known regions of directed membrane addition. We additionally use CRISPR/Cas9 technology to N-terminally tag Rab8, which is then used to address endogenous localization and function. Endogenous Rab8 displays partial coincidence with Rab11 and the Golgi, and this colocalization is enriched during the fast phase of cellularization. When Rab8 function is disrupted, furrow formation in the early embryo is completely abolished. We also demonstrate that Rab8 behaviors require the function of the exocyst complex subunit Sec5 as well as the recycling endosome protein Rab11. Active, GTPlocked Rab8 is primarily associated with dynamic membrane compartments and the plasma membrane, whereas GDP-locked Rab8 forms large cytoplasmic aggregates. These studies suggest a model in which active Rab8 populations direct furrow ingression by guiding the targeted delivery of cytoplasmic membrane stores to the cell surface through interactions with the exocyst tethering complex.
One of the most fundamental changes in cell morphology is the ingression of a plasma membrane furrow. The Drosophila embryo undergoes several cycles of rapid furrow ingression during early development that culminate in the formation of an epithelial sheet. Previous studies have demonstrated the requirement for intracellular trafficking pathways in furrow ingression; however, the pathways that link compartmental behaviors with cortical furrow ingression events are unclear. Here, we show that Rab8 has striking dynamic behaviors in vivo. As furrows ingress, cytoplasmic Rab8 puncta are depleted and Rab8 accumulates at the plasma membrane in a location that coincides with known regions of directed membrane addition. We additionally use CRISPR/Cas9 technology to N-terminally tag Rab8, which is then used to address endogenous localization and function. Endogenous Rab8 displays partial coincidence with Rab11 and the Golgi, and this colocalization is enriched during the fast phase of cellularization. When Rab8 function is disrupted, furrow formation in the early embryo is completely abolished. We also demonstrate that Rab8 behaviors require the function of the exocyst complex subunit Sec5 as well as the recycling endosome protein Rab11. Active, GTPlocked Rab8 is primarily associated with dynamic membrane compartments and the plasma membrane, whereas GDP-locked Rab8 forms large cytoplasmic aggregates. These studies suggest a model in which active Rab8 populations direct furrow ingression by guiding the targeted delivery of cytoplasmic membrane stores to the cell surface through interactions with the exocyst tethering complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.