Recent work by Zamolodchikov and others has uncovered a solvable irrelevant deformation of general 2D CFTs, defined by turning on the dimension 4 operator TT , the product of the left-and right-moving stress tensor. We propose that in the holographic dual, this deformation represents a geometric cutoff that removes the asymptotic region of AdS and places the QFT on a Dirichlet wall at finite radial distance r = r c in the bulk. As a quantitative check of the proposed duality, we compute the signal propagation speed, energy spectrum, and thermodynamic relations on both sides. In all cases, we obtain a precise match. We derive an exact RG flow equation for the metric dependence of the effective action of the TT deformed theory, and find that it coincides with the Hamilton-Jacobi equation that governs the radial evolution of the classical gravity action in AdS.
Estimation of the effective reproductive number Rt is important for detecting changes in disease transmission over time. During the Coronavirus Disease 2019 (COVID-19) pandemic, policy makers and public health officials are using Rt to assess the effectiveness of interventions and to inform policy. However, estimation of Rt from available data presents several challenges, with critical implications for the interpretation of the course of the pandemic. The purpose of this document is to summarize these challenges, illustrate them with examples from synthetic data, and, where possible, make recommendations. For near real-time estimation of Rt, we recommend the approach of Cori and colleagues, which uses data from before time t and empirical estimates of the distribution of time between infections. Methods that require data from after time t, such as Wallinga and Teunis, are conceptually and methodologically less suited for near real-time estimation, but may be appropriate for retrospective analyses of how individuals infected at different time points contributed to the spread. We advise caution when using methods derived from the approach of Bettencourt and Ribeiro, as the resulting Rt estimates may be biased if the underlying structural assumptions are not met. Two key challenges common to all approaches are accurate specification of the generation interval and reconstruction of the time series of new infections from observations occurring long after the moment of transmission. Naive approaches for dealing with observation delays, such as subtracting delays sampled from a distribution, can introduce bias. We provide suggestions for how to mitigate this and other technical challenges and highlight open problems in Rt estimation.
Estimation of the effective reproductive number, Rt, is important for detecting changes in disease transmission over time. During the COVID-19 pandemic, policymakers and public health officials are using Rt to assess the effectiveness of interventions and to inform policy. However, estimation of Rt from available data presents several challenges, with critical implications for the interpretation of the course of the pandemic. The purpose of this document is to summarize these challenges, illustrate them with examples from synthetic data, and, where possible, make methodological recommendations. For near real-time estimation of Rt, we recommend the approach of Cori et al. (2013), which uses data from before time t and empirical estimates of the distribution of time between infections. Methods that require data from after time t, such as Wallinga and Teunis (2004), are conceptually and methodologically less suited for near real-time estimation, but may be appropriate for some retrospective analyses. We advise against using methods derived from Bettencourt and Ribeiro (2008), as the resulting Rt estimates may be biased if the underlying structural assumptions are not met. A challenge common to all approaches is reconstruction of the time series of new infections from observations occurring long after the moment of transmission. Naive approaches for dealing with observation delays, such as subtracting delays sampled from a distribution, can introduce bias. We provide suggestions for how to mitigate this and other technical challenges and highlight open problems in Rt estimation.
Recent work by Zamolodchikov and others has uncovered a solvable irrelevant deformation of general 2D CFTs, defined by turning on the dimension 4 operator T T , the product of the left-and right-moving stress tensor. We propose that in the holographic dual, this deformation represents a geometric cutoff that removes the asymptotic region of AdS and places the QFT on a Dirichlet wall at finite radial distance r = r c in the bulk. As a quantitative check of the proposed duality, we compute the signal propagation speed, energy spectrum, and thermodynamic relations on both sides. In all cases, we obtain a precise match. We derive an exact RG flow equation for the metric dependence of the effective action of the T T deformed theory, and find that it coincides with the Hamilton-Jacobi equation that governs the radial evolution of the classical gravity action in AdS.
We use the conformal bootstrap equations to study the non-perturbative gravitational scattering between infalling and outgoing particles in the vicinity of a black hole horizon in AdS. We focus on irrational 2D CFTs with large c and only Virasoro symmetry. The scattering process is described by the matrix element of two light operators (particles) between two heavy states (BTZ black holes). We find that the operator algebra in this regime is (i) universal and identical to that of Liouville CFT, and (ii) takes the form of an exchange algebra, specified by an R-matrix that exactly matches with the scattering amplitude of 2+1 gravity. The R-matrix is given by a quantum 6j-symbol and the scattering phase by the volume of a hyperbolic tetrahedron. We comment on the relevance of our results to scrambling and the holographic reconstruction of the bulk physics near black hole horizons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.