The problem of violence against individuals with severe mental illness (SMI) has received relatively, little notice, despite several studies suggesting an exceptionally high prevalence of victimization in this population. This paper describes the results of an investigation of the prevalence and correlates of past year physical and sexual assault among a large sample of women and men with SMI drawn from inpatient and outpatient settings across 4 states. Results confirmed preliminary findings of a high prevalence of victimization in this population (with sexual abuse more prevalent for women and physical abuse more prevalent for men), and indicated the existence of a range of correlates of recent victimization, including demographic factors and living circumstances, history of childhood abuse, and psychiatric illness severity and substance abuse. The research and clinical implications of these findings are discussed.
Although over 40 type 1 diabetes (T1D) risk loci have been mapped in humans, the causative genes and variants for T1D are largely unknown. Here, we investigated a candidate gene in the 21q22.3 risk locus—UBASH3A, which is primarily expressed in T cells where it is thought to play a largely redundant role. Genetic variants in UBASH3A have been shown to be associated with several autoimmune diseases in addition to T1D. However, the molecular mechanism underlying these genetic associations is unresolved. Our study reveals a previously unrecognized role of UBASH3A in human T cells: UBASH3A attenuates the NF-κB signal transduction upon T-cell receptor (TCR) stimulation by specifically suppressing the activation of the IκB kinase complex. We identify novel interactions of UBASH3A with nondegradative polyubiquitin chains, TAK1 and NEMO, suggesting that UBASH3A regulates the NF-κB signaling pathway by an ubiquitin-dependent mechanism. Finally, we show that risk alleles at rs11203203 and rs80054410, two T1D-associated variants in UBASH3A, increase UBASH3A expression in human primary CD4+ T cells upon TCR stimulation, inhibiting NF-κB signaling via its effects on the IκB kinase complex and resulting in reduced IL2 gene expression.
Despite significant advances in invertebrate phylogenomics over the past decade, the higher-level phylogeny of Pycnogonida (sea spiders) remains elusive. Due to the inaccessibility of some small-bodied lineages, few phylogenetic studies have sampled all sea spider families. Previous efforts based on a handful of genes have yielded unstable tree topologies. Here, we inferred the relationships of 89 sea spider species using targeted capture of the mitochondrial genome, 56 conserved exons, 101 ultraconserved elements, and three nuclear ribosomal genes. We inferred molecular divergence times by integrating morphological data for fossil species to calibrate 15 nodes in the arthropod tree of life. This integration of data classes resolved the basal topology of sea spiders with high support. The enigmatic family Austrodecidae was resolved as the sister group to the remaining Pycnogonida and the small-bodied family Rhynchothoracidae as the sister group of the robust-bodied family Pycnogonidae. Molecular divergence time estimation recovered a basal divergence of crown group sea spiders in the Ordovician. Comparison of diversification dynamics with other marine invertebrate taxa that originated in the Paleozoic suggests that sea spiders and some crustacean groups exhibit resilience to mass extinction episodes, relative to mollusk and echinoderm lineages.
Recent advances in long-read sequencing solve inaccuracies in alternative transcript identification of full-length transcripts in short-read RNA-Seq data, which encourages the development of methods for isoform-centered functional analysis. Here, we present tappAS, the first framework to enable a comprehensive Functional Iso-Transcriptomics (FIT) analysis, which is effective at revealing the functional impact of context-specific post-transcriptional regulation. tappAS uses isoform-resolved annotation of coding and non-coding functional domains, motifs, and sites, in combination with novel analysis methods to interrogate different aspects of the functional readout of transcript variants and isoform regulation. tappAS software and documentation are available at https://app.tappas.org.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.