The Chronus Quantum (ChronusQ) software package is an open source (under the GNU General Public License v2) software infrastructure which targets the solution of challenging problems that arise in ab initio electronic structure theory. Special emphasis is placed on the consistent treatment of time dependence and spin in the electronic wave function, as well as the inclusion of relativistic effects in said treatments. In addition, ChronusQ provides support for the inclusion of uniform finite magnetic fields as external perturbations through the use of gauge‐including atomic orbitals. ChronusQ is a parallel electronic structure code written in modern C++ which utilizes both message passing implementation and shared memory (OpenMP) parallelism. In addition to the examination of the current state of code base itself, a discussion regarding ongoing developments and developer contributions will also be provided. This article is categorized under: Software > Quantum Chemistry Electronic Structure Theory > Ab Initio Electronic Structure Methods Electronic Structure Theory > Density Functional Theory
We present a heterogeneous central processing unit (CPU) + graphical processing unit (GPU) algorithm for the direct variational optimization of the two-electron reduced-density matrix (2RDM) under two-particle N-representability conditions. This variational 2RDM (v2RDM) approach is the driver for a polynomially scaling approximation to configuration-interaction-driven complete active-space self-consistent field (CASSCF) theory. For v2RDM-based CASSCF computations involving an active space consisting of 50 electrons in 50 orbitals, we observe a speedup of a factor of 3.7 when the code is executed on a combination of an NVIDIA TITAN V GPU and an Intel Core i7-6850k CPU, relative to the case when the code is executed on the CPU alone. We use this GPU-accelerated v2RDM-CASSCF algorithm to explore the electronic structure of the 3,k-circumacene and 3,k-periacene series (k = 2–7) and compare indicators of polyradical character in the lowest-energy singlet states to those observed for oligoacene molecules. The singlet states in larger circumacene and periacene molecules display the same polyradical characteristics observed in oligoacenes, with the onset of this behavior occurring at smallest k for periacenes, followed by the circumacenes and then the oligoacenes. However, the unpaired electron density that accumulates along the zigzag edge of the circumacenes is slightly less than that which accumulates in the oligoacenes, while periacenes clearly exhibit the greatest buildup of unpaired electron density in this region.
We present a relativistic time-dependent equation-of-motion coupled-cluster with single and double excitations (TD-EOM-CCSD) formalism. Unlike other explicitly time-dependent quantum chemical methods, the present approach considers the time correlation function of the dipole operator, as opposed to the expectation value of the time-dependent dipole moment. We include both scalar relativistic effects and spin–orbit coupling variationally in this scheme via the use of the exact two-component (X2C) wave function as the reference that enters the coupled-cluster formalism. In order to evaluate the accuracy of X2C-TD-EOM-CCSD, we compare zero-field splitting in atomic absorption spectra of open-shell systems (Na, K, Mg+, and Ca+) with values obtained from experiment. In closed-shell species (Na+, K+, Mg2+, and Ca2+), we observe singlet–triplet mixing in the X2C-TD-EOM-CC calculations, which results from the use of the X2C reference. The effects of the X2C reference are evaluated by comparing spectra derived from X2C-TD-EOM-CC calculations to those from TD-EOM-CC calculations using a complex generalized Hartree–Fock ( -GHF) reference.
A time-dependent (TD) formulation of equation-of-motion coupled-cluster (EOM-CC) theory can provide excited-state information over an arbitrarily wide energy window with a reduced memory footprint relative to conventional, frequency-domain EOM-CC theory. However, the floating-point costs of the time-integration required by TD-EOM-CC are generally far larger than those of the frequency-domain form of the approach. This work considers the potential of the short iterative Lanczos (SIL) integration scheme [J. Chem. Phys. 1986, 85, 5870–5876] to reduce the floating-point costs of TD-EOM-CC simulations. Low-energy and K-edge absorption features for small molecules are evaluated using TD-EOM-CC with single and double excitations, with the time-integrations carried out via SIL and fourth-order Runge–Kutta (RK4) schemes. Spectra derived from SIL- and RK4-driven simulations are nearly indistinguishable, and with an appropriately chosen subspace dimension, the SIL requires far fewer floating-point operations than are required by RK4. For K-edge spectra, SIL is the more efficient scheme by an average factor of 7.2.
<div><div><div><p>We present a heterogeneous CPU+GPU algorithm for the direct variational optimization of the two-electron reduced-density matrix (2RDM) under two-particle N-representability conditions. This variational 2RDM (v2RDM) approach is the driver for a polynomially-scaling approximation to configuration-interaction-driven complete active space self-consistent field (CASSCF) theory. For v2RDM-based CASSCF com- putations involving an active space consisting of 50 electrons in 50 orbitals [denoted (50e,50o)], we observe a speedup of a factor of 3.7 when the code is executed on a combination of an NVIDIA TITAN V GPU and an Intel Core i7-6850k CPU, relative to the case when the code is executed on the CPU alone. We use this GPU-accelerated v2RDM-CASSCF algorithm to explore the electronic structure of the 3,k-circumacene and 3,k-periacene series (k=2–7) and compare indicators of polyradical character in the lowest-energy singlet states to those observed for oligoacene molecules. The singlet states in larger circumacene and periacene molecules display the same polyradical characteristics observed in oligoacenes, with the onset of this behavior occuring at smallest k for periacenes, followed by the circumacenes and then the oligoacenes. However, the unpaired electron density that accumulates along the zig-zag edge of the circumacenes is slightly less than that which accumulates in the oligoacenes, while periacenes clearly exhibit the greatest build-up of unpaired electron density in this region.</p></div></div></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.