There is increasing interest in understanding how trait networks can be manipulated to improve the performance of crop species. Working towards this goal, we have identified key traits linking the acquisition of water, the transport of water to the sites of evaporation and photosynthesis, stomatal conductance, and growth across eight maize hybrid lines grown under well-watered and water-limiting conditions in Northern Colorado. Under well-watered conditions, hybrids with higher end-ofseason growth and grain yield exhibited higher leaf-specific conductance, lower operating water potentials, higher rates of midday stomatal conductance, higher rates of net CO 2 assimilation, and greater leaf osmotic adjustment. This trait network was similar under water-limited conditions with the notable exception that linkages between water transport, midday stomatal conductance, and growth were even stronger than under fully watered conditions. The maintenance of high leaf-specific conductance throughout the day was achieved via higher maximal conductance rates rather than lower susceptibility to conductance loss. Our results suggest that efforts to improve maize performance in well-watered and water-limiting conditions would benefit from considering the physiological trait networks governing water and carbon flux rather than focusing on single traits independently of one another.
There is increasing interest in understanding how trait networks can be manipulated to improve the performance of crop species. Working towards this goal, we have identified key traits linking the acquisition of water, the transport of water to the sites of evaporation and photosynthesis, stomatal conductance, and growth across eight maize hybrid lines grown under well-watered and water-limiting conditions in Northern Colorado. Under well-watered conditions, well-performing hybrids exhibited high leaf-specific conductance, low operating water potentials, high rates of midday stomatal conductance, high rates of net CO2 assimilation, greater leaf osmotic adjustment, and higher end-of-season growth and grain yield. This trait network was similar under water-limited conditions with the notable exception that linkages between water transport, midday stomatal conductance, and growth were even stronger than under fully-watered conditions. The results of this experiment suggest that similar trait networks might confer improved performance under contrasting climate and soil conditions, and that efforts to improve the performance of crop species could possibly benefit by considering the water transport pathway within leaves, as well as within the whole-xylem, in addition to root-level and leaf-level traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.