Diverse urban air pollution sources contribute to spatially variable atmospheric concentrations, with important public health implications. Mobile monitoring shows promise for understanding spatial pollutant patterns, yet it is unclear whether uncertainties associated with temporally sparse sampling and instrument performance limit our ability to identify locations of elevated pollution. To address this question, we analyze 9 months of repeated weekday daytime on-road mobile measurements of black carbon (BC), particle number (PN), and nitrogen oxide (NO, NO 2 ) concentrations within 24 census tracts across Houston, Texas. We quantify persistently elevated, intermittent, and extreme concentration behaviors at 50 m road segments on surface streets and 90 m segments on highways relative to median statistics across the entire sampling domain. We find elevated concentrations above uncertainty levels (±40%) within portions of every census tract, with median concentration increases ranging from 2 to 3× for NO 2 , and >9× for NO. In contrast, PN exhibits elevated concentrations of 1.5−2× the domainwide median and distinct spatial patterns relative to other pollutants. Co-located elevated concentrations of primary combustion tracers (BC and NO x ) near 30% of metal recycling and concrete batch plant facilities within our sampled census tracts are comparable to those measured within 200 m of highways. Our results demonstrate how extensive mobile monitoring across multiple census tracts can quantitatively characterize urban air pollution source patterns and are applicable to developing effective source mitigation policies.
In this paper, the authors address the impact of uncertainty on estimates of transient climate sensitivity (TCS) of the globally averaged surface temperature, including both uncertainty in past forcing and internal variability in the climate record. This study provides a range of probabilistic estimates of the TCS that combine these two sources of uncertainty for various underlying assumptions about the nature of the uncertainty. The authors also provide estimates of how quickly the uncertainty in the TCS may be expected to diminish in the future as additional observations become available. These estimates are made using a nonlinear Kalman filter coupled to a stochastic, global energy balance model, using the filter and observations to constrain the model parameters. This study verifies that model and filter are able to emulate the evolution of a comprehensive, state-of-the-art atmosphere-ocean general circulation model and to accurately predict the TCS of the model, and then apply the methodology to observed temperature and forcing records of the twentieth century.For uncertainty assumptions best supported by global surface temperature data up to the present time, this paper finds a most likely present-day estimate of the transient climate sensitivity to be 1.6 K, with 90% confidence the response will fall between 1.3 and 2.6 K, and it is estimated that this interval may be 45% smaller by the year 2030. The authors calculate that emissions levels equivalent to forcing of less than 475 ppmv CO 2 concentration are needed to ensure that the transient temperature response will not exceed 2 K with 95% confidence. This is an assessment for the short-to-medium term and not a recommendation for long-term stabilization forcing; the equilibrium temperature response to this level of CO 2 may be much greater. The flat temperature trend of the last decade has a detectable but small influence on TCS. This study describes how the results vary if different uncertainty assumptions are made and shows they are robust to variations in the initial prior probability assumptions.
A crop footprint refers to the estimated spatial extent of growing areas for a specific crop, and is commonly used to represent the potential "use site" footprint for a pesticide labeled for use on that crop. A methodology for developing probabilistic crop footprints to estimate the likelihood of pesticide use and the potential co-occurrence of pesticide use and listed species locations was tested at the national scale and compared to alternative methods. The probabilistic aspect of the approach accounts for annual crop rotations and the uncertainty in remotely sensed crop and land cover data sets. The crop footprints used historically are derived exclusively from the National Land Cover Database (NLCD) Cultivated Crops and/or Pasture/Hay classes. This approach broadly aggregates agriculture into 2 classes, which grossly overestimates the spatial extent of individual crops that are labeled for pesticide use. The approach also does not use all the available crop data, represents a single point in time, and does not account for the uncertainty in land cover data set classifications. The probabilistic crop footprint approach described herein incorporates best available information at the time of analysis from the National Agricultural Statistics Service (NASS) Cropland Data Layer (CDL) for 5 y (2008-2012 at the time of analysis), the 2006 NLCD, the 2007 NASS Census of Agriculture, and 5 y of NASS Quick Stats (2008-2012). The approach accounts for misclassification of crop classes in the CDL by incorporating accuracy assessment information by state, year, and crop. The NLCD provides additional information to improve the CDL crop probability through an adjustment based on the NLCD accuracy assessment data using the principles of Bayes' Theorem. Finally, crop probabilities are scaled at the state level by comparing against NASS surveys (Census of Agriculture and Quick Stats) of reported planted acres by crop. In an example application of the new method, the probabilistic crop footprint for soybean resulted in national and statewide soybean acreages that are within the error bounds of the average reported NASS yearly soybean acreage over the same time period, whereas the method using only NLCD resulted in an acreage that is over 4 times the survey acreage. When the probabilistic crop footprint for soybean was used in a co-occurrence analysis with listed species locations, the number of potentially proximal species identified was half the number based on the standard NLCD crop footprint method (276 species with the probabilistic crop footprint vs 511 for the conventional method). The probabilistic crop footprint methodology allows for a more comprehensive and representative understanding of the potential pesticide use footprint co-occurrence with endangered species locations for use in effects determinations.
The California red‐legged frog (CRLF), Delta smelt (DS), and California tiger salamander (CTS) are 3 species listed under the United States Federal Endangered Species Act (ESA), all of which inhabit aquatic ecosystems in California. The US Environmental Protection Agency (USEPA) has conducted deterministic screening‐level risk assessments for these species potentially exposed to malathion, an organophosphorus insecticide and acaricide. Results from our screening‐level analyses identified potential risk of direct effects to DS as well as indirect effects to all 3 species via reduction in prey. Accordingly, for those species and scenarios in which risk was identified at the screening level, we conducted a refined probabilistic risk assessment for CRLF, DS, and CTS. The refined ecological risk assessment (ERA) was conducted using best available data and approaches, as recommended by the 2013 National Research Council (NRC) report “Assessing Risks to Endangered and Threatened Species from Pesticides.” Refined aquatic exposure models including the Pesticide Root Zone Model (PRZM), the Vegetative Filter Strip Modeling System (VFSMOD), the Variable Volume Water Model (VVWM), the Exposure Analysis Modeling System (EXAMS), and the Soil and Water Assessment Tool (SWAT) were used to generate estimated exposure concentrations (EECs) for malathion based on worst‐case scenarios in California. Refined effects analyses involved developing concentration–response curves for fish and species sensitivity distributions (SSDs) for fish and aquatic invertebrates. Quantitative risk curves, field and mesocosm studies, surface‐water monitoring data, and incident reports were considered in a weight‐of‐evidence approach. Currently, labeled uses of malathion are not expected to result in direct effects to CRLF, DS or CTS, or indirect effects due to effects on fish and invertebrate prey. Integr Environ Assess Manag 2018;14:224–239. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC)
A probabilistic ecological risk assessment (ERA) was conducted to determine the potential effects of acute and chronic exposure of aquatic invertebrate communities to imidacloprid arising from labeled agricultural and nonagricultural uses in the United States. Aquatic exposure estimates were derived using a higher-tier refined modeling approach that accounts for realistic variability in environmental and agronomic factors. Toxicity was assessed using refined acute and chronic community-level effect metrics for aquatic invertebrates (i.e., species or taxon sensitivity distributions) developed using the best available data. Acute and chronic probabilistic risk estimates were derived by integrating the exposure distributions for different use patterns with the applicable species or taxon sensitivity distributions to generate risk curves, which plot cumulative probability of exceedance versus the magnitude of effect. Overall, the results of this assessment indicated that the aquatic invertebrate community is unlikely to be adversely affected by acute or chronic exposure to imidacloprid resulting from currently registered uses of imidacloprid in the United States. Environ Toxicol Chem 2017;36:1375-1388. © 2016 SETAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.