Significance
This study defines a unique mechanism controlling the activation of Hippo signaling and consequent inhibition of cell growth. Specifically, serum starvation is found to induce the large tumor suppressor (LATS)1/2 kinases to phosphorylate and thus stabilize the 130 kDa isoform of the membrane-associated polarity protein angiomotin (Amot130). As a consequence, Amot130 recruits the E3 protein-ubiquitin ligase atrophin-1 interacting protein 4. This multiprotein complex then signals the degradation of Yes-associated protein (YAP) and the inhibition of cell growth. These findings significantly modify our current view that YAP phosphorylation by LATS1/2 is sufficient for its inhibition in mammals and thus for growth arrest.
Background: Amot130 regulates cell differentiation and growth signaling. Results: Amot130 binds and activates overexpressed AIP4 to ubiquitinate Amot130 and YAP resulting in Amot130 stabilization and YAP degradation. Conclusion: Amot130 and AIP4 cooperatively inhibit YAP and cell growth. Significance: A mechanism is described whereby Amot130 directs AIP4 to potentially suppress tumor cell growth.
OBJECTIVE
Improvement in treatment outcome for patients with glioblastoma multiforme (GBM) requires a multifaceted approach due to dysregulation of numerous signaling pathways. The murine double minute 2 (MDM2) protein may fulfill this requirement because it is involved in the regulation of growth, survival, and invasion. The objective of this study was to investigate the impact of modulating MDM2 function in combination with front-line temozolomide (TMZ) therapy in GBM.
METHODS
The combination of TMZ with the MDM2 protein–protein interaction inhibitor nutlin3a was evaluated for effects on cell growth, p53 pathway activation, expression of DNA repair proteins, and invasive properties. In vivo efficacy was assessed in xenograft models of human GBM.
RESULTS
In combination, TMZ/nutlin3a was additive to synergistic in decreasing growth of wild-type p53 GBM cells. Pharmacodynamic studies demonstrated that inhibition of cell growth following exposure to TMZ/nutlin3a correlated with: 1) activation of the p53 pathway, 2) downregulation of DNA repair proteins, 3) persistence of DNA damage, and 4) decreased invasion. Pharmacokinetic studies indicated that nutlin3a was detected in human intracranial tumor xenografts. To assess therapeutic potential, efficacy studies were conducted in a xenograft model of intracranial GBM by using GBM cells derived from a recurrent wild-type p53 GBM that is highly TMZ resistant (GBM10). Three 5-day cycles of TMZ/nutlin3a resulted in a significant increase in the survival of mice with GBM10 intracranial tumors compared with single-agent therapy.
CONCLUSIONS
Modulation of MDM2/p53-associated signaling pathways is a novel approach for decreasing TMZ resistance in GBM. To the authors’ knowledge, this is the first study in a humanized intracranial patient-derived xenograft model to demonstrate the efficacy of combining front-line TMZ therapy and an inhibitor of MDM2 protein–protein interactions. http://thejns.org/doi/abs/10.3171/2016.1.JNS152513
We developed an interactive laboratory that allows students to identify and grade tissue samples from human breast biopsies, using techniques similar to those used by actual pathologists. This unique lab develops a practical and intellectual understanding of basic tissue structures that make up living systems, utilizing technology to bring together pathology, cancer biology, genetics, and bioethics in a relevant and engaging way that leaves a lasting impression on students. The activities described are appropriate for students at all levels of high school and college, especially those with an interest in health care careers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.