Myelomeningocele (MMC) is the most common cause of neurogenic bladder dysfunction (NBD). We recently developed a novel retinoic acid (RA)-induced MMC model in fetal rats. The objective of this study was to use this model to assess functional and structural characteristics of the detrusor muscle in MMC-associated NBD. Time-dated pregnant Sprague-Dawley rats were gavage fed 60 mg/kg RA dissolved in olive oil or olive oil alone [embryonic day 10 (E10)]. Bladder specimens from olive oil-exposed fetuses (OIL; n = 71), MMC (n = 79), and RA-exposed-no MMC (RA, n = 62) were randomly assigned for functional and histopathological evaluation and protein analysis. Contractility responses to field and agonist-mediated stimulation (KCl and bethanecol) were analyzed. The expression patterns of alpha-smooth muscle actin, myosin, desmin, vimentin, and collagen III and I were analyzed by immunohistochemistry and Western blotting. Spatial and temporal distribution of nerve fibers within the detrusor muscle was monitored by neurotubulin-beta-III throughout gestation. Neither OIL, MMC, nor RA detrusor responded to field stimulation. MMC bladder strips showed a significant decrease in contractility after KCl and bethanechol stimulation compared with OIL and RA bladders. Bladder detrusor morphology and expression patterns of smooth muscle markers were similar between groups. Detrusor muscles in OIL and RA fetuses were densely innervated, possessing abundant intramural ganglia and nerve trunks that branch to supply smooth muscle bundles. In MMC bladders, neurotubulin-beta-III-positive nerve fibers were markedly decreased with advancing gestational age and were almost completely absent at term (E22). We conclude that the biomechanical properties of fetal rat MMC bladders are analogous to that seen in humans with MMC-associated NBD. Decreased nerve density indicates loss of peripheral neural innervation throughout gestation. The early observation of decreased innervation and decreased contractility in the absence of morphologic abnormalities in muscle structure or extracellular matrix supports a pathophysiological hypothesis that denervation is the primary insult preceding the observed alterations in bladder muscle structure and function.
Congenital diaphragmatic hernia (CDH) impairs fetal lung growth and increases the density of alveolar epithelial type 2 (AE2) cells. There is controversy whether surfactant protein (SP) expression is altered in CDH. The primary aim of this study was to assess SP expression (mRNA and protein) in the left and right lungs of fetal sheep with and without a diaphragmatic hernia (DH). Left-sided DH was created in four fetal sheep at 65 days of gestational age (g.a.). Sham-operated animals were used as controls. At 138 days g.a., lungs were harvested and the following parameters were measured: SP-A, -B, and -C mRNA expression (Northern blot), SP-A and -B expression (Western blot), and AE2 cell density (immunohistochemistry). The lung weight-to-body weight ratio was reduced by 42% in DH animals. The left-to-right lung weight ratio was lower in DH animals (0.47 +/- 0.03 vs. 0.69 +/- 0.03), indicative of asymmetric lung growth. SP-A, -B, and -C mRNA expression were increased by 61.7%, 32.9%, and 75.5%, respectively, in the left lungs of DH animals. SP-A and SP-B were also increased in DH. In the right lung, SP expression (mRNA and protein) was not different between groups. AE2 cell density was higher (by 67%) in the left but not right lungs of DH animals. Although DH in fetal sheep results in significant lung hypoplasia, SP expression is not reduced. On the contrary, SP expression was increased in the ipsilateral lung of fetuses with left-sided DH. Furthermore, AE2 cell density is increased in DH, suggesting that the increase in SP mRNA and protein levels is due to increases AE2 cell number. Our data further support the premise that fetal lung hypoplasia favors an AE2 phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.