Highlights d 102 genes implicated in risk for autism spectrum disorder (ASD genes, FDR % 0.1) d Most are expressed and enriched early in excitatory and inhibitory neuronal lineages d Most affect synapses or regulate other genes; how these roles dovetail is unknown d Some ASD genes alter early development broadly, others appear more specific to ASD
SummaryWe present the largest exome sequencing study of autism spectrum disorder (ASD) to date (n=35,584 total samples, 11,986 with ASD). Using an enhanced Bayesian framework to integrate de novo and case-control rare variation, we identify 102 risk genes at a false discovery rate ≤ 0.1. Of these genes, 49 show higher frequencies of disruptive de novo variants in individuals ascertained for severe neurodevelopmental delay, while 53 show higher frequencies in individuals ascertained for ASD; comparing ASD cases with mutations in these groups reveals phenotypic differences. Expressed early in brain development, most of the risk genes have roles in regulation of gene expression or neuronal communication (i.e., mutations effect neurodevelopmental and neurophysiological changes), and 13 fall within loci recurrently hit by copy number variants. In human cortex single-cell gene expression data, expression of risk genes is enriched in both excitatory and inhibitory neuronal lineages, consistent with multiple paths to an excitatory/inhibitory imbalance underlying ASD.
We examined peer-reviewed studies in order to understand the current status of empirically-based evidence on the clinical applications of robots in the diagnosis and treatment of Autism Spectrum Disorders (ASD). Studies are organized into four broad categories: (a) the response of individuals with ASD to robots or robot-like behavior in comparison to human behavior, (b) the use of robots to elicit behaviors, (c) the use of robots to model, teach, and/or practice a skill, and (d) the use of robots to provide feedback on performance. A critical review of the literature revealed that most of the findings are exploratory and have methodological limitations that make it difficult to draw firm conclusions about the clinical utility of robots. Finally, we outline the research needed to determine the incremental validity of this technique.
Some individuals with autism spectrum disorder (ASD) carry functional mutations rarely observed in the general population. We explored the genes disrupted by these variants from joint analysis of protein-truncating (PTV), missense, and copy number variants (CNVs) in a cohort of 63,237 individuals. We discovered 72 ASD risk genes at false discovery rate (FDR)≤0.001 (185 at FDR≤0.05). De novo PTVs, damaging missense variants, and CNVs represented 57.5%, 21.1%, and 8.44% of association evidence, while CNVs conferred greatest relative risk. Meta-analysis with cohorts ascertained for developmental delay (DD, N=91,605) yielded 373 ASD/DD risk genes at FDR≤0.001 (664 at FDR≤0.05), some of which differed in relative frequency of mutation between ASD and DD. The DD-associated genes were enriched in transcriptomes of progenitor and immature neuronal cells whereas genes displaying stronger evidence in ASD were more enriched in maturing neurons and overlapped with schizophreniaassociated genes, emphasizing that these neuropsychiatric disorders share common pathways to risk.
To uncover the circuit-level alterations that underlie atypical sensory processing associated with autism, we adopted a symptom-to-circuit approach in the Fmr1-knockout (Fmr1) mouse model of Fragile X syndrome. Using a go/no-go task and in vivo two-photon calcium imaging, we find that impaired visual discrimination in Fmr1 mice correlates with marked deficits in orientation tuning of principal neurons and with a decrease in the activity of parvalbumin interneurons in primary visual cortex. Restoring visually evoked activity in parvalbumin cells in Fmr1 mice with a chemogenetic strategy using designer receptors exclusively activated by designer drugs was sufficient to rescue their behavioral performance. Strikingly, human subjects with Fragile X syndrome exhibit impairments in visual discrimination similar to those in Fmr1 mice. These results suggest that manipulating inhibition may help sensory processing in Fragile X syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.