Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement. To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world's population. Current annual worldwide potato crop losses due to late blight are conservatively estimated at $6.7 billion. Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars. Here we report the sequence of the P. infestans genome, which at approximately 240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for approximately 74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.
ObjectiveFriedreich ataxia (FRDA) is a progressive neurodegenerative disorder of adults and children. This study analyzed neurological outcomes and changes to identify predictors of progression and generate power calculations for clinical trials.MethodsEight hundred and twelve subjects in a natural history study were evaluated annually across 12 sites using the Friedreich Ataxia Rating Scale (FARS), 9‐Hole Peg Test, Timed 25‐Foot Walk, visual acuity tests, self‐reported surveys and disability scales. Cross‐sectional outcomes were assessed from recent visits, and longitudinal changes were gaged over 5 years from baseline.ResultsCross‐sectional outcomes correlated with measures of disease severity. Age, genetic severity (guanine‐adenine‐adenine [GAA] repeat length), and testing site predicted performance. Serial progression was relatively linear using FARS and composite measures of performance, while individual performance outcomes were nonlinear over time. Age strongly predicted change from baseline until removing the effects of baseline FARS scores, when GAA becomes a more important factor. Progression is fastest in younger subjects and subjects with longer GAA repeats. Improved coefficients of variation show that progression results are more reproducible over longer assessment durations.InterpretationWhile age predicted progression speed in simple analyses and may provide an effective way to stratify cohorts, separating the effects of age and genetic severity is difficult. Controlling for baseline severity, GAA is the major determinant of progression rate in FRDA. Clinical trials will benefit from enrollment of younger subjects, and sample size requirements will shrink with longer assessment periods. These findings should prove useful in devising gene therapy trials in the near future.
Friedreich's ataxia (FRDA) is a severe neurodegenerative disease caused by homozygous expansion of the guanine-adenine-adenine (GAA) repeats in intron 1 of the FXN gene leading to transcriptional repression of frataxin expression. Post-translational histone modifications that typify heterochromatin are enriched in the vicinity of the repeats, whereas active chromatin marks in this region are underrepresented in FRDA samples. Yet, the immediate effect of the expanded repeats on transcription progression through FXN and their long-range effect on the surrounding genomic context are two critical questions that remain unanswered in the molecular pathogenesis of FRDA. To address these questions, we conducted next-generation RNA sequencing of a large cohort of FRDA and control primary fibroblasts. This comprehensive analysis revealed that the GAA-induced silencing effect does not influence expression of neighboring genes upstream or downstream of FXN. Furthermore, no long-range silencing effects were detected across a large portion of chromosome 9. Additionally, results of chromatin immunoprecipitation studies confirmed that histone modifications associated with repressed transcription are confined to the FXN locus. Finally, deep sequencing of FXN pre-mRNA molecules revealed a pronounced defect in the transcription elongation rate in FRDA cells when compared with controls. These results indicate that approaches aimed to reactivate frataxin expression should simultaneously address deficits in transcription initiation and elongation at the FXN locus.
To use optical coherence tomography (OCT) and contrast letter acuity to characterize vision loss in Friedreich ataxia (FRDA). High- and low-contrast letter acuity and neurological measures were assessed in 507 patients with FRDA. In addition, OCT was performed on 63 FRDA patients to evaluate retinal nerve fiber layer (RNFL) and macular thickness. Both OCT and acuity measures were analyzed in relation to genetic severity, neurologic function, and other disease features. High- and low-contrast letter acuity was significantly predicted by age and GAA repeat length, and highly correlated with neurological outcomes. When tested by OCT, 52.7% of eyes (n = 110) had RNFL thickness values below the fifth percentile for age-matched controls. RNFL thickness was significantly lowest for those with worse scores on the Friedreich ataxia rating scale (FARS), worse performance measure composite Z2 scores, and lower scores for high- and low-contrast acuity. In linear regression analysis, GAA repeat length and age independently predicted RNFL thickness. In a subcohort of participants, 21% of eyes from adult subjects (n = 29 eyes) had macular thickness values below the first percentile for age-matched controls, suggesting that macular abnormalities can also be present in FRDA. Low-contrast acuity and RNFL thickness capture visual and neurologic function in FRDA, and reflect genetic severity and disease progression independently. This suggests that such measures are useful markers of neurologic progression in FRDA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.