Bardet-Biedl syndrome (BBS) is a heterogeneous and pleiotropic autosomal recessive disorder characterized by obesity, retinal degeneration, polydactyly, renal dysfunction, and mental retardation. BBS results from defects in primary and sensory cilia. Mutations in 21 genes have been linked to BBS and proteins encoded by 8 of these genes form a multiprotein complex termed the BBSome. Mutations in BBS2, a component of the BBSome, result in BBS as well as non-syndromic retinal degeneration in humans and rod degeneration in mice, but the role of BBS2 in cone photoreceptor survival is not clear. We used zebrafish bbs2–/– mutants to better understand how loss of bbs2 leads to photoreceptor degeneration. Zebrafish bbs2–/– mutants exhibited impaired visual function as larvae and adult zebrafish underwent progressive cone photoreceptor degeneration. Cone degeneration was accompanied by increased numbers of activated microglia, indicating an inflammatory response. Zebrafish exhibit a robust ability to regenerate lost photoreceptors following retinal damage, yet cone degeneration and inflammation was insufficient to trigger robust Müller cell proliferation. In contrast, high intensity light damage stimulated Müller cell proliferation and photoreceptor regeneration in both wild-type and bbs2–/– mutants, although the bbs2–/– mutants could only restore cones to pre-damaged densities. In summary, these findings suggest that cone degeneration leads to an inflammatory response in the retina and that BBS2 is necessary for cone survival. The zebrafish bbs2 mutant also represents an ideal model to identify mechanisms that will enhance retinal regeneration in degenerating diseases.
Photoreceptor degeneration leads to irreversible vision loss in humans with retinal dystrophies such as Retinitis Pigmentosa. Whereas photoreceptor loss is permanent in mammals, zebrafish possesses the ability to regenerate retinal neurons and restore visual function. Following acute damage, Müller glia (MG) re-enter the cell cycle and produce multipotent progenitors whose progeny differentiate into mature neurons. Both MG reprogramming and proliferation of retinal progenitor cells require reactive microglia and associated inflammatory signaling. Paradoxically, MG in zebrafish models of photoreceptor degeneration fail to re-enter the cell cycle and regenerate lost cells. Here, we used the zebrafish cep290 mutant to demonstrate that progressive cone degeneration generates an immune response but does not stimulate MG proliferation. Acute light damage triggered photoreceptor regeneration in cep290 mutants but cones were only restored to pre-lesion densities. Using irf8 mutant zebrafish, we found that the chronic absence of microglia reduced inflammation and rescued cone degeneration in cep290 mutants. Finally, single-cell RNA-sequencing revealed sustained expression of notch3 in MG of cep290 mutants and inhibition of Notch signaling induced MG to re-enter the cell cycle. Our findings provide new insights on the requirements for MG to proliferate and the potential for immunosuppression to prolong photoreceptor survival.
microRNAs are important regulators of gene expression. In the retina, the mir-183/96/182 cluster is of particular interest due to its robust expression and studies in which loss of the cluster caused photoreceptor degeneration. However, it is unclear which of the three miRNAs in the cluster are ultimately required in photoreceptors, whether each may have independent, contributory roles, or whether a single miRNA from the cluster compensates for the loss of another. These are important questions that will not only help us to understand the role of these particular miRNAs in the retina, but will deepen our understanding of how clustered microRNAs evolve and operate. To that end, we have developed a complete panel of single, double, and triple mir-183/96/182 mutant zebrafish. While the retinas of all mutant animals were normal, the triple mutants exhibited acute hair cell degeneration which corresponded with impaired swimming and death at a young age. By measuring the penetrance of this phenotype in each mutant line, we determine which of the three miRNAs in the cluster are necessary and/or sufficient to ensure normal hair cell development and function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.