Oncogene-induced senescence functions to limit tumor development. However, a complete understanding of the signals that trigger this type of senescence is currently lacking. We found that mutations affecting NF1, Raf, and Ras induce a global negative feedback response that potently suppresses Ras and/or its effectors. Moreover, these signals promote senescence by inhibiting the Ras/PI3K pathway, which can impact the senescence machinery through HDM2 and FOXO. This negative feedback program is regulated in part by RasGEFs, Sprouty proteins, RasGAPs, and MKPs. Moreover, these signals function in vivo in benign human tumors. Thus, the ultimate response to the aberrant activation of the Ras pathway is a multifaceted negative feedback signaling network that terminates the oncogenic signal and participates in the senescence response.
Summary Loss-of-function mutations in the NF1 tumor suppressor result in deregulated Ras signaling and drive tumorigenesis in the familial cancer syndrome neurofibromatosis type I. However, the extent to which NF1-inactivation promotes sporadic tumorigenesis is unknown. Here we report that NF1 is inactivated in sporadic gliomas via two mechanisms: excessive proteasomal degradation and genetic loss. NF1 protein destabilization is triggered by the hyperactivation of protein kinase C (PKC) and confers sensitivity to PKC inhibitors. However complete genetic loss, which only occurs when p53 is inactivated, mediates sensitivity to mTOR inhibitors. These studies reveal an expanding role for NF1-inactivation in sporadic gliomagenesis and illustrate how different mechanisms of inactivation are utilized in genetically distinct tumors, which consequently impacts therapeutic sensitivity. Significance Tumor suppressors are often mutated in human cancer; however, the excessive proteasomal destruction of tumor suppressor proteins also promotes tumorigenesis. Here we show that the NF1 protein is destabilized in sporadic GBMs as a consequence of the hyperactivation of PKC. Notably, this destabilization confers sensitivity to PKC inhibitors. In contrast, a separate subset of GBMs that possess NF1 mutations are insensitive to PKC inhibitors but are sensitive to mTOR inhibitors. These findings reveal a broad role for NF1-inactivation in gliomagenesis and illustrate how different mechanisms of inactivation are utilized in the same tumor-type. Moreover they highlight the importance of elucidating the molecular mechanisms that underlie tumorigenesis, as such knowledge may be essential for developing personalized therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.