Since 2003, a collaborative effort (SEASWAP) between fishers, scientists, and managers has researched how Alaskan sperm whales locate demersal longline fishing activity and then depredate sablefish from gear. Sperm whales constantly produce relatively low-frequency biosonar signals whenever foraging; therefore, over the past decade, passive acoustic monitoring (PAM) has become a basic tool, used for both measuring depredation activity and accelerating field tests of potential depredation countermeasures. This paper reviews and summarizes past published PAM research on SEASWAP, and then provides a detailed example of how PAM methods are currently being used to test countermeasures. The review covers two major research thrusts: (i) identifying acoustic outputs of fishing vessels that provide long-distance “cues” that attract whales to fishing activity; and (ii) validating whether distinctive “creak” sounds can be used to quantify and measure depredation rates, using both bioacoustic tags and statistical comparisons between visual and acoustic depredation estimates during federal sablefish surveys. The latter part of the paper then provides an example of how PAM is being used to study a particular potential countermeasure: an “acoustic decoy” which transmits fishing vessel acoustic cues to attract animals away from true fishing activity. The results of an initial 2011 field trial are presented to show how PAM was used to design the decoy signals and monitor the efficacy of the deployment. The ability of PAM to detect both whale presence and depredation behaviour has reduced the need to deploy researchers or other specialists on fishing cruises. Instead, volunteer fishers can deploy “user-friendly” acoustic recorders on their gear, greatly facilitating the testing of various deterrents, and providing the industry and regulators a convenient and unobtrusive tool for monitoring both the scale and long-term spread of this behaviour across the Alaskan fishery.
In Alaskan waters, depredation on sablefish longline gear by sperm whales increases harvesting cost, negatively biases stock assessments, and presents a risk of entanglement for whales. The Southeast Alaska Sperm Whale Avoidance Project (SEASWAP), a collaborative effort involving industry, scientists, and managers, since 2003 has undertaken research to evaluate depredation with a goal of recommending measures to reduce interactions. Prior to 2003, little was known about sperm whale distribution and behaviour in the Gulf of Alaska (GOA). Although fishers were reporting increasing interactions, the level of depredation varied with no apparent predictor of occurrence across vessels. Between 2003 and 2007, fishers were provided with fishery logbooks and recorded information on whale behaviour, whale presence and absence, during the set, soak, and haul for 319 sets in the GOA. Data were evaluated for a vessel, area, and seasonal (month) effect in the presence and absence of sperm whales. Using catch per unit effort (cpue) as a metric, in kg/100 hooks, results indicated that depredation depended on both the vessel and the area. More whales associated with vessels from April to August. Sperm whales were also likely to be present when cpue was high, revealing that whales and fishers both knew the most productive fishing areas, but confounding the use of cpue as a metric for depredation. Using a Bayesian mark-recapture analysis and the sightings histories of photo-identified whales, an estimated Nˆ=135 (95% CI 124, 153) sperm whales were associating with vessels in 2014. A spatial model was fitted to 319 longline sets and quantified a 3% loss in cpue, comparable to other global studies on sperm whale depredation. Through all phases of SEASWAP, our understanding of depredation has gained significantly. This successful collaboration should be considered as a model to create partnerships and build collaborations between researchers and fisherpeople encountering marine mammal interactions with fishing gear.
These results suggest that skin samples from cetaceans may be subsampled to reflect diet during a narrower time period; specifically different layers of skin may contain a dietary time series. This underscores the importance of selecting an appropriate portion of skin to analyze based on the species and objectives of the study.
False killer whales (Pseudorca crassidens) depredate pelagic longlines in offshore Hawaiian waters. On January 28, 2015 a depredation event was recorded 14 m from an integrated GoPro camera, hydrophone, and accelerometer, revealing that false killer whales depredate bait and generate clicks and whistles under good visibility conditions. The act of plucking bait off a hook generated a distinctive 15 Hz line vibration. Two similar line vibrations detected at earlier times permitted the animal's range and thus signal source levels to be estimated over a 25-min window. Peak power spectral density source levels for whistles (4-8 kHz) were estimated to be between 115 and 130 dB re 1 μPa/Hz @ 1 m. Echolocation click source levels over 17-32 kHz bandwidth reached 205 dB re 1 μPa @ 1 m pk-pk, or 190 dB re 1 μPa @ 1 m (root-mean-square). Predicted detection ranges of the most intense whistles are 10 to 25 km at respective sea states of 4 and 1, with click detection ranges being 5 times smaller than whistles. These detection range analyses provide insight into how passive acoustic monitoring might be used to both quantify and avoid depredation encounters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.