SummarySerine/arginine-rich (SR) proteins constitute an important class of splicing regulators in higher eukaryotes that share a modular structure consisting of one or two N-terminal RNA recognition motif (RRM) domains and a Cterminal RS-rich domain. Herein, we have investigated the in vivo functional distribution of Arabidopsis SR factors. Agrobacterium-mediated transient transformation revealed nuclear speckled distribution and the overall colocalization of fluorescent protein (FP)-tagged SR factors in both tobacco and Arabidopsis cells. Their overall colocalization in larger nucleoplasmic domains was further observed after transcriptional and phosphorylation/dephosphorylation inhibition, indicating a close functional association between SR factors, independent of their phosphorylation state. Furthermore, we demonstrated in vivo the conserved role of the RS and RRM domains in the efficient targeting of Arabidopsis SR proteins to nuclear speckles by using a series of structural domain-deleted mutants of atRSp31 and atRSZp22. We suggest additional roles of RS domain such as the shuttling of atRSZp22 between nucleoplasm and nucleolus through its phosphorylation level. The coexpression of deletion mutants with wild-type SR proteins revealed potential complex associations between them. Fluorescence recovery after photobleaching demonstrated similar dynamic properties of SR factors in both tobacco transiently expressing cells and Arabidopsis transgenics. Cell cycle phase-dependent organization of FP-tagged SR proteins was observed in living tobacco BY-2 cells. We showed that atRSp31 is degraded at metaphase by fluorescence quantification. SR proteins also localized within small foci at anaphase. These results demonstrate interesting related features as well as potentially important differences between plant and animal SR proteins.
Serine/arginine-rich (SR) proteins are splicing regulators that share a modular structure consisting of one or two N-terminal RNA recognition motif domains and a C-terminal RS-rich domain. We investigated the dynamic localization of the Arabidopsis thaliana SR protein RSZp22, which, as we showed previously, distributes in predominant speckle-like structures and in the nucleolus. To determine the role of RSZp22 diverse domains in its nucleolar distribution, we investigated the subnuclear localization of domain-deleted mutant proteins. Our results suggest that the nucleolar localization of RSZp22 does not depend on a single targeting signal but likely involves different domains/motifs. Photobleaching experiments demonstrated the unrestricted dynamics of RSZp22 between nuclear compartments. Selective inhibitor experiments of ongoing cellular phosphorylation influenced the rates of exchange of RSZp22 between the different nuclear territories, indicating that SR protein mobility is dependent on the phosphorylation state of the cell. Furthermore, based on a leptomycin B-and fluorescence loss in photobleaching-based sensitive assay, we suggest that RSZp22 is a nucleocytoplasmic shuttling protein. Finally, with electron microscopy, we confirmed that RSp31, a plant-specific SR protein, is dynamically distributed in nucleolar cap-like structures upon phosphorylation inhibition. Our findings emphasize the high mobility of Arabidopsis SR splicing factors and provide insights into the dynamic relationships between the different nuclear compartments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.