Seven temperature-sensitive cell lysis (cy) mutant strains of Saccharomyces cerevisiae were isolated which lyse at the restrictive temperature on hypotonic but not on osmotically supported medium. The seven mutants fell into four complementation groups, CLY12 to CLY15. The wild-type CLY1S gene was isolated by complementation of the clyl5 temperature-sensitive growth defect. Sequence analysis revealed that the complementing DNA fragment encoded a partial PKC1 gene, which has previously been isolated as an S. cerevisiae homolog of mammalian protein kinase C genes (D. E. Levin, F. 0. Fields, R. Kunisawa, J. M. Bishop, and J. Thorner, Cell 62:213-224, 1990 The yeast cell wall is a complex rigid structure, responsible for cell shape, which undergoes a series of significant changes during the mitotic cell cycle (6). For example, bud emergence requires modifications of the cell wall at a precisely localized site and controlled cell wall growth in order to produce a daughter cell. Other cellular processes such as mating and sporulation also involve specific alterations of the cell wall structure.Yeast cell walls are constructed almost entirely of two classes of polysaccharides: polymers of mannose covalently linked to peptides, which are termed mannoproteins, and polymers of glucose, termed glucans. A third sugar polymer of N-acetylglucosamine, chitin, is present in only minor amounts (8). A number of Saccharomyces cerevisiae mutants with defects in the synthesis of cell wall components have been isolated. Defects in agglutination with a 1,3-alinked mannose antiserum define mannoprotein (mnn) mutants (reviewed in Ballou [1]), yeast killer toxin-resistant (kre) mutants display reduced levels of 1,6-,-glucan in the cell wall (2), and chitin synthase mutants are unable to convert exogenous glucosamine to chitin (3,22). The major cell wall-degrading enzyme activities mainly consist of 1,3-,-and
The genes responsible for cell wall biosynthesis and cell division (dcw genes) were identified and sequenced in Streptococcus pneumoniae. The genetic organization of the dcw cluster in Streptococcus pneumoniae differed significantly from the clusters of other bacteria reported to date. In particular, the genes corresponding to the 2 min region of the Escherichia coli chromosome were found distributed in three genetically separate regions of the Streptococcus pneumoniae chromosome. The first region contained the expected ftsA and ftsZ cell division genes at one end and pbp2b, ddl and murF at the other end. The murD, murG and divIB genes, always found located upstream of ftsA, were found in a second region separated from the first. A third region contained the yllC, yllD, pbp2x and mraY genes. The chromosomal region downstream of ftsZ was also sequenced and characterized. In Streptococcus pneumoniae this region contains four ORFs, all of unknown function, and an ORF encoding the Bacillus subtilis DivIVA homologue. The gene order and the organization of this region was found to be conserved in Staphylococcus aureus, Streptococcus pyogenes and Bacillus subtilis, raising the possibility that previously unidentified loci may also be involved in division.
The public availability of numerous microbial genomes is enabling the analysis of bacterial biology in great detail and with an unprecedented, organism-wide and taxon-wide, broad scope. Streptococcus pneumoniae is one of the most important bacterial pathogens throughout the world. We present here sequences and functional annotations for 2.1-Mbp of pneumococcal DNA, covering more than 90% of the total estimated size of the genome. The sequenced strain is a clinical isolate resistant to macrolides and tetracycline. It carries a type 19F capsular locus, but multilocus sequence typing for several conserved genetic loci suggests that the strain sequenced belongs to a pneumococcal lineage that most often expresses a serotype 15 capsular polysaccharide. A total of 2,046 putative open reading frames (ORFs) longer than 100 amino acids were identified (average of 1,009 bp per ORF), including all described two-component systems and aminoacyl tRNA synthetases. Comparisons to other complete, or nearly complete, bacterial genomes were made and are presented in a graphical form for all the predicted proteins.
The two-hybrid system for the identification of protein-protein interactions was used to screen for proteins that interact in vivo with the Saccharomyces cerevisiae Pkc1 protein, a homolog of mammalian protein kinase C. Four positive clones were isolated that encoded portions of the protein kinase Mkk1, which acts downstream of Pkc1p in the PKC1-mediated signalling pathway. Subsequently, Pkc1p and the other PKC1 pathway components encoding members of a MAP kinase cascade, Bck1p (a MEKK), Mkk1p, Mkk2p (two functionally homologous MEKs), and Mpk1p (a MAP kinase), were tested pairwise for interaction in the two-hybrid assay. Pkc1p interacted specifically with small N-terminal deletions of Mkk1p, and no interaction between Pkc1p and any of the other known pathway components could be detected. Interaction between Pkc1p and Mkk1p, however, was found to be independent of Mkk1p kinase activity. Bck1p was also found to interact with Mkk1p and Mkk2p, and the interaction required only the predicted C-terminal catalytic domain of Mkk1p. Furthermore, we detected protein-protein interactions between two Bck1p molecules via their N-terminal regions. Finally, Mkk2p and Mpk1p also interacted in the two-hybrid assay. These results suggest that the members of the PKC1-mediated MAP kinase cascade form a complex in vivo and that Pkc1p is capable of directly interacting with at least one component of this pathway.
The Candida albicans inositol biosynthetic gene and its regulation have been studied. The gene, CalNO1, was cloned on a multicopy vector by complementation of a Saccharomyces cerevisae mutant strain. Southern blot analysis established that the cloned DNA was C. albicans genomic DNA in origin; neither rearrangements nor pseudogenes were evident. Blot hybridization analysis using RNA isolated from C. albicans revealed that a single RNA species (1.8 kilobases) was homologous to the cloned DNA fragment. The steady-state levels of these transcripts were shown to be regulated in response to inositol in the growth media. In addition, the steady-state levels of the RNA encoded by the cloned C. albicans DNA present in S. cerevisiae on a plasmid (YRpCalNO1) were regulated in response to exogenously provided inositol. The cloned C. albicans DNA fragment was shown to restore inositol-1-phosphate synthase activity to a S. cerevisiae mutant strain defective in this enzyme. This activity was also shown to be regulated in response to the presence of inositol in the growth media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.