The successful visualization of cracks with the SWIFT MRI sequence compared with other clinical modalities suggests that SWIFT MRI can effectively detect microcracks in teeth and therefore may have potential to be a non-invasive method for the in vivo detection of cracks in human teeth.
Objectives: Proximal dental caries remains a prevalent disease with only modest detection rates by current diagnostic systems. Many new systems are available without controlled validation of diagnostic efficacy. The objective of this study was to evaluate the diagnostic efficacy of three potentially promising new imaging systems. Methods: This study evaluated the caries detection efficacy of Schick 33 (Sirona Dental, Salzburg, Austria) intraoral digital detector images employing an advanced sharpening filter, Planmeca ProMax ® (Planmeca Inc., Helsinki, Finland) extraoral "panoramic bitewing" images and Sirona Orthophos XG3D (Sirona Dental) CBCT images with advanced artefact reduction. Conventional photostimulable phosphor images served as the control modality. An ex vivo study design using extracted human teeth, ten expert observers and micro-CT ground truth was employed. Results: Receiver operating characteristic analysis indicated similar diagnostic efficacy of all systems (ANOVA p . 0.05). The sensitivity of the Schick 33 images (0.48) was significantly lower than the other modalities (0.53-0.62). The specificity of the Planmeca images (0.86) was significantly lower than Schick 33 (0.96) and XG3D (0.97). The XG3D showed significantly better cavitation detection sensitivity (0.62) than the other modalities (0.48-0.57).
Conclusions:The Schick 33 images demonstrated reduced caries sensitivity, whereas the Planmeca panoramic bitewing images demonstrated reduced specificity. XG3D with artefact reduction demonstrated elevated sensitivity and specificity for caries detection, improved depth accuracy and substantially improved cavitation detection. Care must be taken to recognize potential false-positive caries lesions with Planmeca panoramic bitewing images. Use of CBCT for caries detection must be carefully balanced with the presence of metal artefacts, time commitment, financial cost and radiation dose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.