The metabolism of Clostridium acetobutylicum was manipulated, at neutral pH and in chemostat culture, by changing the overall degree of reduction of the substrate, using mixtures of glucose and glycerol. Cultures grown on glucose alone produced only acids, and the intracellular enzymatic pattern indicated the absence of butyraldehyde dehydrogenase activity and very low levels of coenzyme A-transferase, butanol, and ethanol dehydrogenase activities. In contrast, cultures grown on mixtures of glucose and glycerol produced mainly alcohols and low levels of hydrogen. The low production of hydrogen was not associated with a change in the hydrogenase level but was correlated with the induction of a ferredoxin-NAD reductase and a decreased level of NADH-ferredoxin reductase. The production of alcohols was related to the induction of a NAD-dependent butyraldehyde dehydrogenase and to higher expression of NAD-dependent ethanol and butanol dehydrogenases. The coenzyme A-transferase was poorly expressed, and thus no acetone was produced. These changes in the enzymatic pattern, obtained with cultures grown on a mixture of glucose and glycerol, were associated with a 7-fold increase of the intracellular level of NADH and a 2.5-fold increase of the level of ATP.The complex anaerobic metabolism of Clostridium acetobutylicum has been studied in considerable detail in recent years, but the factors involved in triggering the metabolic shift, and the physiological state associated with the transition from the acidogenic to solventogenic phase, are still not totally understood.In a number of studies, the effects of electron flow regulation, nutrient limitation, and end product accumulation on the onset and maintenance of solvent production have been investigated. In typical batch fermentations, initiation of solventogenesis is associated with a pH-acid effect. Lowering the intracellular pH and thereby increasing the concentration of undissociated butyric acid has a positive effect on the production of acetone and butanol (2,13,14,28,29,38). The alteration of the electron flow by carbon monoxide, a reversible inhibitor of the hydrogenase, can also induce the shift from an acidogenic fermentation to an alcohologenic one (9,20,25,27): alcohol (butanol and ethanol) and lactate production at very high specific rates is obtained, without acetone and little or no acetate and butyrate formation. The decrease of hydrogenase activity or concentration by iron limitation conditions (19) specifically yields butanol and ethanol as the major fermentation end products. It has also been shown, in continuous cultures at low pH, that phosphate limitation, nitrogen limitation, and glucose excess are conditions under which primarily solvents are produced by C. acetobutylicum (3,4,35).In this study, the metabolic flexibility of C. acetobutylicum was studied in chemostat culture by increasing the NAD(P)H pressure, using mixtures of glucose and a more reduced chemical like glycerol. The pH of the culture was maintained at 6.5 so that no changes could be r...
The molecular characterization of a B12-independent glycerol dehydratase from Clostridium butyricum has recently been reported [Raynaud, C., et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 5010-5015]. In this work, we have further characterized this system by biochemical and crystallographic methods. Both the glycerol dehydratase (GD) and the GD-activating enzyme (GD-AE) could be purified to homogeneity under aerobic conditions. In this form, both the GD and GD-AE were inactive. A reconstitution procedure, similar to what has been reported for pyruvate formate lyase activating enzyme (PFL-AE), was employed to reconstitute the activity of the GD-AE. Subsequently, the reconstituted GD-AE could be used to reactivate the GD under strictly anaerobic conditions. We also report here the crystal structure of the inactive GD in the native (2.5 A resolution, Rcryst = 17%, Rfree = 20%), glycerol-bound (1.8 A resolution, Rcryst = 21%, Rfree = 24%), and 1,2-propanediol-bound (2.4 A resolution, Rcryst = 20%, Rfree = 24%) forms. The overall fold of the GD monomer was similar to what has been observed for pyruvate formate lyase (PFL) and anaerobic ribonucleotide reductase (ARNR), consisting of a 10-stranded beta/alpha barrel motif. Clear density was observed for both substrates, and a mechanism for the dehydration reaction is presented. This mechanism clearly supports a concerted pathway for migration of the OH group through a cyclic transition state that is stabilized by partial protonation of the migrating OH group. Finally, despite poor alignment (rmsd approximately 6.8 A) of the 10 core strands that comprise the barrel structure of the GD and PFL, the C-terminal domains of both proteins align well (rmsd approximately 0.7 A) and have structural properties consistent with this being the docking site for the activating enzyme. A single point mutation within this domain, at a strictly conserved arginine residue (R782K) in the GD, resulted in formation of a tight protein-protein complex between the GD and the GD-AE in vivo, thereby supporting this hypothesis.
Microorganisms extensively reorganize gene expression to adjust growth rate to changes in growth conditions. At the genomic scale, we measured the contribution of both transcription and transcript stability to regulating messenger RNA (mRNA) concentration in Escherichia coli. Transcriptional control was the dominant regulatory process. Between growth rates of 0.10 and 0.63 h−1, there was a generic increase in the bulk mRNA transcription. However, many transcripts became less stable and the median mRNA half-life decreased from 4.2 to 2.8 min. This is the first evidence that mRNA turnover is slower at extremely low-growth rates. The destabilization of many, but not all, transcripts at high-growth rate correlated with transcriptional upregulation of genes encoding the mRNA degradation machinery. We identified five classes of growth-rate regulation ranging from mainly transcriptional to mainly degradational. In general, differential stability within polycistronic messages encoded by operons does not appear to be affected by growth rate. We show here that the substantial reorganization of gene expression involving downregulation of tricarboxylic acid cycle genes and acetyl-CoA synthetase at high-growth rates is controlled mainly by transcript stability. Overall, our results demonstrate that the control of transcript stability has an important role in fine-tuning mRNA concentration during changes in growth rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.