Reaction of complex [Cp2Mo2(CO)4(micro,eta 2-P2)] (Cp=C5H5 (1)) with CuPF6, AgX (X=BF4, ClO4, PF6, SbF6, Al{OC(CF3)3}4) and [(Ph3P)Au(THF)][PF6] (THF=tetrahydrofuran), respectively, results in the facile formation of the dimers 3 b-h of the general formula [M2({Cp2Mo2 (CO)4(micro,eta 2:eta 2-P2)}2)({Cp2Mo2(CO)4 (micro,eta 2:eta 1:eta 1-P2)}2)][X]2 (M=Cu, Ag, Au; X=BF4, ClO4, PF6, SbF6, Al{OC(CF3)3}4). As revealed by X-ray crystallography, all these dimers comprise dicationic moieties that are well-separated from the weakly coordinating anions in the solid state. If 1 is allowed to react with AgNO2 and LAuCl (L=CO or tetrahydrothiophene), respectively, the dimer [Ag2{Cp2Mo2 (CO)4(micro,eta 2:eta 1:eta 1-P2)}2(eta 2-NO2)2] (5) and the complex [AuCl{Cp2Mo2(CO)4(micro,eta 2:eta 1-P2)}] (6) are formed, which have also been characterised by X-ray crystallography. In compounds 5 and 6, the anions remain coordinated to the Group 11 metal centres. Spectroscopic data suggest that the dimers 3 b-h display dynamic behaviour in solution and this is discussed by using the comprehensive results obtained for 3 g (M=Ag; X=Al{OC(CF3)3}4) as a basis. The interpretation of the experimental results is facilitated by density functional theory (DFT) calculations on 3 g (structures, energetics, NMR shielding tensors). The 31P magic angle spinning (MAS) NMR spectra recorded for the dimers 3 b (M=Cu; X=PF6) and 3c (M=Ag; X=BF4) as well as that of the previously reported one-dimensional (1 D) polymer [Ag2{Cp2Mo2(CO)4(micro,eta 2:eta 1:eta 1-P2)}3(micro,eta 1:eta 1-NO3)]n[NO3]n (4) are also discussed herein and the strong dependence of the chemical shift of the phosphorus atoms within each compound on subtle structural differences in the solid state is demonstrated. Furthermore, the X-ray crystallographic and 31P MAS NMR spectroscopic characterisation of a new polymorph of 1 is reported.
In the mid-1990s, the first examples of complexes containing triple bonds between transition metals and heavier analogues of the carbon as well as the nitrogen groups were reported, thus signaling the beginning of a new era in organometallic chemistry. Since then the progress in this field has been tremendous, with a large number of representative complexes being isolated and characterized. This review highlights the astonishing development of the chemistry of complexes containing triple bonds between transition metals and the heavier elements of groups 14 and 15 since its birth. The synthesis and the structural and spectroscopic features of these compounds are comprehensively discussed. Furthermore, the elucidation of their bonding modes by quantum-chemical methods as well as the relation between the reactivities of these complexes and their electronic structures are presented.
Oxygen core excitations in different molecular molybdena silica models are evaluated using density-functional theory (DFT). These results can be compared with in situ X-ray absorption fine structure (NEXAFS) measurements near the O K-edge of molybdena model catalysts supported on SBA-15 silica, used for exploratory catalytic activity studies. The comparison allows an analysis of structural details of the molybdena species. The silica support is found to contribute to the NEXAFS spectrum in an energy range well above that of the molybdena units, allowing a clear separation between the corresponding contributions. Different types of oxygen species, O(1) in terminal MdO bonds, O(2) in interphase Mo—O—Si bridges and in Mo—O—Mo linkages, as well as O(2) in terminal Mo—O—H groups can be distinguished in the theoretical spectra of the molybdena species with molybdenum in tetrahedral (dioxo species), pentahedral (monooxo species), and octahedral coordination. The experimental NEXAFS spectra exhibit a pronounced double-peak structure in the O 1s to Mo 4dO 2p excitation range of 529 536 eV. Comparison with the present theoretical data gives clear indications that dioxo molybdena species with tetrahedral MoO4 units can explain the experimental spectrum. This does not fully exclude species with other Mo coordination, like pentahedral. However, the latter are believed to exist in the present samples in much smaller amounts. The experimental NEXAFS spectrum for the supported molybdena species differs substantially from that for MoO3 bulk material with octahedral MoO6 units where the observed asymmetric peak structure is also reproduced by the calculations
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.