Thyroid ultrasound (US) is a key examination for the management of thyroid nodules. Thyroid US is easily accessible, noninvasive, and cost-effective, and is a mandatory step in the workup of thyroid nodules. The main disadvantage of the method is that it is operator dependent. Thyroid US assessment of the risk of malignancy is crucial in patients with nodules, in order to select those who should have a fine needle aspiration (FNA) biopsy performed. Due to the pivotal role of thyroid US in the management of patients with nodules, the European Thyroid Association convened a panel of international experts to set up European guidelines on US risk stratification of thyroid nodules. Based on a review of the literature and on the American Association of Clinical Endocrinologists, American Thyroid Association, and Korean guidelines, the panel created the novel European Thyroid Imaging and Reporting Data System, called EU-TIRADS. This comprises a thyroid US lexicon; a standardized report; definitions of benign and low-, intermediate-, and high-risk nodules, with the estimated risks of malignancy in each category; and indications for FNA. Illustrated by numerous US images, the EU-TIRADS aims to serve physicians in their clinical practice, to enhance the interobserver reproducibility of descriptions, and to simplify communication of the results.
Graves’ disease (GD) is a systemic autoimmune disorder characterized by the infiltration of thyroid antigen-specific T cells into thyroid-stimulating hormone receptor (TSH-R)-expressing tissues. Stimulatory autoantibodies (Ab) in GD activate the TSH-R leading to thyroid hyperplasia and unregulated thyroid hormone production and secretion. Diagnosis of GD is straightforward in a patient with biochemically confirmed thyrotoxicosis, positive TSH-R-Ab, a hypervascular and hypoechoic thyroid gland (ultrasound), and associated orbitopathy. In GD, measurement of TSH-R-Ab is recommended for an accurate diagnosis/differential diagnosis, prior to stopping antithyroid drug (ATD) treatment and during pregnancy. Graves’ hyperthyroidism is treated by decreasing thyroid hormone synthesis with the use of ATD, or by reducing the amount of thyroid tissue with radioactive iodine (RAI) treatment or total thyroidectomy. Patients with newly diagnosed Graves’ hyperthyroidism are usually medically treated for 12–18 months with methimazole (MMI) as the preferred drug. In children with GD, a 24- to 36-month course of MMI is recommended. Patients with persistently high TSH-R-Ab at 12–18 months can continue MMI treatment, repeating the TSH-R-Ab measurement after an additional 12 months, or opt for therapy with RAI or thyroidectomy. Women treated with MMI should be switched to propylthiouracil when planning pregnancy and during the first trimester of pregnancy. If a patient relapses after completing a course of ATD, definitive treatment is recommended; however, continued long-term low-dose MMI can be considered. Thyroidectomy should be performed by an experienced high-volume thyroid surgeon. RAI is contraindicated in Graves’ patients with active/severe orbitopathy, and steroid prophylaxis is warranted in Graves’ patients with mild/active orbitopathy receiving RAI.
The use of recombinant human thyrotropin and low-dose (1.1 GBq) postoperative radioiodine ablation may be sufficient for the management of low-risk thyroid cancer. (Funded by the French National Cancer Institute [INCa] and the French Ministry of Health; ClinicalTrials.gov number, NCT00435851; INCa number, RECF0447.).
Cervical ultrasound scanning (US) is considered a key examination, by all major thyroid and endocrine specialist societies for the postoperative follow-up of thyroid cancer patients to assess the risk of recurrence. Neck US imaging is readily available, non-invasive, relatively easy to perform, cost-effective, and can guide diagnostic and therapeutic procedures with low complication rates. Its main shortcoming is its operator-dependency. Because of the pivotal role of US in the care of thyroid cancer patients, the European Thyroid Association convened a panel of international experts to review technical aspects, indications, results, and limitations of cervical US in the initial staging and follow-up of thyroid cancer patients. The main aim is to establish guidelines for both a cervical US scanning protocol and US-guided diagnostic and therapeutic procedures in patients with thyroid cancer. This report presents (1) standardization of the US scanning procedure, techniques of US-guided fine-needle aspiration, and reporting of findings; (2) definition of criteria for classification of malignancy risk based on cervical US imaging characteristics of neck masses and lymph nodes; (3) indications for US-guided fine-needle aspiration and for biological in situ assessments; (4) proposal of an algorithm for the follow-up of thyroid cancer patients based on risk stratification following histopathological and cervical US findings, and (5) discussion of the potential use of US-guided localization and ablation techniques for locoregional thyroid metastases.
Objective: To evaluate prospectively the diagnostic accuracy of the thyroid imaging reporting and data system (TI-RADS) and its interobserver agreement and to estimate the reduction of indications of fineneedle aspiration biopsies (FNABs). Design: A prospective comparative study was designed. Methods: In 2 years, 4550 nodules in 3543 patients were prospectively scored using a flowchart and a six-point scale and then submitted to US-FNAB. Results were read according to the Bethesda system. Histopathological results were available for 263 cases after surgery. Sensitivity, specificity, negative predictive value (NPV) and positive predictive value, and accuracy were calculated for the gray-scale score, elastography, and a combination of both methods. Interobserver agreement was calculated using the kappa statistic. The reduction in the number of FNABs was estimated. Results: When compared with cytopathological results, sensitivity, specificity, NPV, and accuracy were 95.7, 61, 99.7, and 62% for the TI-RADS gray-scale score; 74.2, 91.1, 98, and 90% for elastography; and 98.5, 44.7, 99.8, and 48.3% for a combination of both methods respectively. When compared with histopathological results, the sensitivity of the gray-scale score, elastography, and a combination of both methods were 93.2, 41.9, and 96.7% respectively. Interobserver agreement for the six-point scale and the recommendation for biopsy were substantial (k valueZ0.72 and 0.76 respectively). The reduction in the number of FNABs was estimated to be 33.8%. Conclusion: The TI-RADS score has high sensitivity and NPV for the diagnosis of thyroid carcinoma. A hard nodule should always be considered as suspicious for malignancy but elastography cannot be used alone. Combination of elastography with gray-scale can be used to improve sensitivity or specificity. Interobserver agreement and decrease in unnecessary biopsies are significant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.