Tryptophan catabolism mediated by indoleamine 2,3-dioxygenase (IDO) is an important mechanism of peripheral immune tolerance contributing to tumoral immune resistance. IDO inhibition is thus an active area of research in drug development. Recently, our group has shown that tryptophan 2,3-dioxygenase (TDO), an unrelated hepatic enzyme also catalyzing the first step of tryptophan degradation, is also expressed in many tumors and that this expression prevents tumor rejection by locally depleting tryptophan. Herein, we report a structure-activity study on a series of 3-(2-(pyridyl)ethenyl)indoles. More than 70 novel derivatives were synthesized, and their TDO inhibitory potency was evaluated. The rationalization of the structure-activity relationships (SARs) revealed essential features to attain high TDO inhibition and notably a dense H-bond network mainly involving His(55) and Thr(254) residues. Our study led to the identification of a very promising compound (58) displaying good TDO inhibition (K(i) = 5.5 μM), high selectivity, and good oral bioavailability. Indeed, 58 was chosen for preclinical evaluation.
a b s t r a c tIndoleamine 2,3-dioxygenase (IDO) is an important new therapeutic target for the treatment of cancer. With the aim of discovering novel IDO inhibitors, a virtual screen was undertaken and led to the discovery of the keto-indole derivative 1a endowed with an inhibitory potency in the micromolar range. Detailed kinetics were performed and revealed an uncompetitive inhibition profile. Preliminary SARs were drawn in this series and corroborated the putative binding orientation as suggested by docking.
a b s t r a c tIndoleamine 2,3-dioxygenase (IDO) is a heme dioxygenase which has been shown to be involved in the pathological immune escape of diseases such as cancer. The synthesis and structure-activity relationships (SAR) of a novel series of IDO inhibitors based on the indol-2-yl ethanone scaffold is described. In vitro and in vivo biological activities have been evaluated, leading to compounds with IC 50 values in the micromolar range in both tests. Introduction of small substituents in the 5-and 6-positions of the indole ring, indole N-methylation and variations of the aromatic side chain are all well tolerated. An iron coordinating group on the linker is a prerequisite for biological activity, thus corroborating the virtual screening results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.