Proteins containing [Fe±S] clusters perform essential functions in all domains of life. Previously, we identi®ed the sufABCDSE operon as being necessary for virulence of the plant pathogen Erwinia chrysanthemi. In addition, we collected preliminary evidence that the sufABCDSE operon might be involved in the assembly of [Fe±S] clusters. Of particular interest are the sufB, sufC and sufD genes, which are conserved among Eubacteria, Archaea, plants and parasites. The present study establishes SufC as an unorthodox ATPase of the ABC superfamily that is located in the cytosol, wherein it interacts with both SufB and SufD. Moreover, under oxidative stress conditions, SufC was found to be necessary for the activity of enzymes containing oxygen-labile [Fe±S] clusters, but dispensable for glutamate synthase, which contains an oxidatively stable [Fe±S] cluster. Lastly, we have shown SufBCD to be essential for iron acquisition via chrysobactin, a siderophore of major importance in virulence. We discuss a model wherein the SufBCD proteins contribute to bacterial pathogenicity via their role in the assembly of [Fe±S] clusters under oxidative stress and iron limitation.
The universal stress protein (UspA) superfamily encompasses a conserved group of proteins that are found in bacteria, archaea, and eukaryotes. Escherichia coli harbors six usp genes-uspA, -C, -D, -E, -F, and -G-the expression of which is triggered by a large variety of environmental insults. The uspA gene is important for survival during cellular growth arrest, but the exact physiological role of the Usp proteins is not known. In this work we have performed phenotypic characterization of mutants with deletions of the six different usp genes. We report on hitherto unknown functions of these genes linked to motility, adhesion, and oxidative stress resistance, and we show that usp functions are both overlapping and distinct. Both UspA and UspD are required in the defense against superoxide-generating agents, and UspD appears also important in controlling intracellular levels of iron. In contrast, UspC is not involved in stress resistance or iron metabolism but is essential, like UspE, for cellular motility. Electron microscopy demonstrates that uspC and uspE mutants are devoid of flagella. In addition, the function of the uspC and uspE genes is linked to cell adhesion, measured as FimH-mediated agglutination of yeast cells. While the UspC and UspE proteins promote motility at the expense of adhesion, the UspF and UspG proteins exhibit the exact opposite effects. We suggest that the Usp proteins have evolved different physiological functions that reprogram the cell towards defense and escape during cellular stress.
Erwinia chrysanthemi causes soft-rot disease in a great variety of plants. In addition to the depolymerizing activity of plant cell wall-degrading enzymes, iron acquisition and resistance to oxidative stress contribute greatly to the virulence of this pathogen. Here, we studied the pin10 locus originally thought to encode new virulence factors. The sequence analysis revealed six open reading frames that were homologous to the Escherichia coli sufA, sufB, sufC, sufD, sufS and sufE genes. Sequence similarity searching predicted that (i) SufA, SufB, SufD, SufS and SufE proteins are involved in iron metabolism and possibly in Fe-S cluster assembly; and (ii) SufC is an ATPase of an ABC transporter. The reverse transcription-polymerase chain reaction procedure showed that the sufABCDSE genes constitute an operon. Expression of a sufB:uidA fusion was found to be induced in iron-deficient growth conditions and to be repressed by the iron-sensing Fur repressor. Each of the six suf genes was inactivated by the insertion of a cassette generating a non-polar mutation. The intracellular iron level in the sufA, sufB, sufC, sufS and sufE mutants was higher than in the wild type, as assessed by increased sensitivity to the iron-activated antibiotic streptonigrin. In addition, inactivation of sufC and sufD led to increased sensitivity to paraquat. Virulence tests showed that sufA and sufC mutants exhibited reduced ability to cause maceration of chicory leaves, whereas a functional sufC gene was necessary for the bacteria to cause systemic invasion of Saintpaulia ionantha. The E. coli sufC homologue was inactivated by reverse genetic. This mutation was found to modify the soxR-dependent induction of soxS gene expression. We discuss the possibility that SufC is a versatile ATPase that can associate either with the other Suf proteins to form a Fe-S cluster-assembling machinery or with membrane proteins encoded elsewhere in the chromosome to form an Fe-S ABC exporter. Overall, these results stress the importance of the connection between iron metabolism and oxidative stress during the early steps of infection by E. chrysanthemi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.