Flow-induced phase transitions are a fundamental (but poorly understood) property of non-equilibrium systems, and are also of practical importance for tuning the processing conditions for plastics, petroleum products, and other related materials. Recognition that polymers may exhibit liquid crystal properties has led to the discovery of the first tailored side-chain liquid crystal polymers (SCLCPs), which are formed by inserting a spacer between the main polymer chain and the lateral mesogen liquid-crystalline graftings. Subsequent research has sought to understand the nature of the coupling between the main polymer chain and the mesogens, with a view to obtaining better control of the properties of these tailored structures. We show here that the parallel or perpendicular orientation of the mesogens with respect to the main chain can be reversed by the application of an external field produced by a shear flow, demonstrating the existence of an isotropic nematic phase transition in SCLCPs. Such a transition, which was theoretically predicted for low-molecular-weight liquid crystals but never observed, is shown to be a general property of SCLCPs too. We expect that these SCLCPs will prove to be good candidate systems for the experimental study of these non-equilibrium phenomena.
This article deals with the identification of solid-like properties measured at room temperature at a sub-millimetre length scale in liquid water. At a macroscopic scale, normal liquids (i.e. above melting temperature), and in particular water, are typically and empirically defined by the absence of shear elasticity, in contrast to solids or plastic fluids that require a stress threshold for flowing. A novel method optimizing the transmission of the shear stress to the sample enables a more complete probe of the mechanical response of liquids. It reveals that glass formers and viscous alkanes actually exhibit finite macroscopic shear elasticity away from any phase transition. This protocol is here applied for the first time to liquid water at room temperature, revealing, at the sub-millimetre scale, a low-frequency solid-like property.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.