Kinases are principal components of signal transduction pathways and the focus of intense basic and drug discovery research. Irreversible inhibitors that covalently modify non-catalytic cysteines in kinase active-sites have emerged as valuable probes and approved drugs. Many protein classes, however, possess functional cysteines and therefore understanding the proteome-wide selectivity of covalent kinase inhibitors is imperative. Here, we accomplish this objective using activity-based protein profiling coupled with quantitative mass spectrometry to globally map the targets, both specific and non-specific, of covalent kinase inhibitors in human cells. Many of the specific off-targets represent non-kinase proteins that, interestingly, possess conserved, active-site cysteines. We define windows of selectivity for covalent kinase inhibitors and show that, when these windows are exceeded, rampant proteome-wide reactivity and kinase target-independent cell death conjointly occur. Our findings, taken together, provide an experimental roadmap to illuminate opportunities and surmount challenges for the development of covalent kinase inhibitors.
Fully phosphorothioate antisense oligonucleotides (ASOs) with locked nucleic acids (LNAs) improve target affinity, RNase H activation and stability. LNA modified ASOs can cause hepatotoxicity, and this risk is currently not fully understood. In vitro cytotoxicity screens have not been reliable predictors of hepatic toxicity in non-clinical testing; however, mice are considered to be a sensitive test species. To better understand the relationship between nucleotide sequence and hepatotoxicity, a structure–toxicity analysis was performed using results from 2 week repeated-dose-tolerability studies in mice administered LNA-modified ASOs. ASOs targeting human Apolipoprotien C3 (Apoc3), CREB (cAMP Response Element Binding Protein) Regulated Transcription Coactivator 2 (Crtc2) or Glucocorticoid Receptor (GR, NR3C1) were classified based upon the presence or absence of hepatotoxicity in mice. From these data, a random-decision forest-classification model generated from nucleotide sequence descriptors identified two trinucleotide motifs (TCC and TGC) that were present only in hepatotoxic sequences. We found that motif containing sequences were more likely to bind to hepatocellular proteins in vitro and increased P53 and NRF2 stress pathway activity in vivo. These results suggest in silico approaches can be utilized to establish structure–toxicity relationships of LNA-modified ASOs and decrease the likelihood of hepatotoxicity in preclinical testing.
The severe fibrinonecrotic pneumonia associated with pneumonic pasteurellosis usually results from colonization of the lower respiratory tract by Pusteurellu huemolyticu biotype A, serotype l(A1). Despite recent research efforts, the authors lack a detailed understanding of the interactions and host response to P. huemolyticu in the respiratory tract. The authors hypothesize that management and environmental stress factors or viral infection alters the upper respiratory tract (URT) epithelium allowing P. huemolyticu to colonize the epithelium. Once the URT is colonized, large numbers of organisms enter the lung where they interact with alveolar macrophages. Endotoxin, released from the bacteria, crosses the alveolar wall where it activates pulmonary intravascular macrophages, endothelium, neutrophils, lymphocytes, platelets, complement, and Hageman factor leading to complex interactions of cells and mediators. It is the progression of this inflammatory response with neutrophil influx that is ultimately responsible for the pulmonary injury. Leukotoxin is a major virulence factor of P. haemolyiicu that allows it to survive by destroying phagocytic cells. At subcytolytic concentrations it may also enhance the inflammatory response by activating cells to produce mediators and release reactive oxygen metabolites and proteases. has been reproduced experimentally in calves by transthoracic or intratracheal administration of P. huemolytica A 1 alone.*.'* Despite recent research efforts, we lack a detailed understanding of the interaction and host response to P.huernolyticu A1 in the ruminant respiratory tract. This article reviews the information presently available on the interaction of this bacteria with the respiratory tract and discusses possible pathogenic mechanisms. We will not attempt to review the extensive literature on viral-bacterial synergism as it relates to pulmonary bacterial infections. In addition, we will not discuss the effect of stress on immune function and its effect on the susceptibility of cattle to shipping fever. However, the reader is referred to several articles on these s~bjects.~,~~~*'~-'' Several observations point to the central role that P. haemolyticu A1 has in bovine shipping fever. In clinically healthy cattle, P. huemolyticu are present in low numbers in the nasal passages and those that are isolated are predominantly biotype A serotype 2 (A2) which is rarely associated with shipping Exposure of healthy cattle to stressful agents such as viral infection, change in management practices (marketing, transportation and processing), and change in environmental (heat, cold) conditions, leads to an explosive growth and selective colonization by P. huemolyticu A1 in the upper
BackgroundMicroRNAs (miRNAs) are small, non-coding RNAs that regulate protein levels post-transcriptionally. miRNAs play important regulatory roles in many cellular processes and have been implicated in several diseases. Recent studies have reported significant levels of miRNAs in a variety of body fluids, raising the possibility that miRNAs could serve as useful biomarkers. Next-generation sequencing (NGS) is increasingly employed in biomedical investigations. Although concordance between this platform and qRT-PCR based assays has been reported in high quality specimens, information is lacking on comparisons in biofluids especially urine. Here we describe the changes in miRNA expression patterns in a rodent model of renal tubular injury (gentamicin). Our aim is to compare RNA sequencing and qPCR based miRNA profiling in urine specimen from control and rats with confirmed tubular injury.ResultsOur preliminary examination of the concordance between miRNA-seq and qRT-PCR in urine specimen suggests minimal agreement between platforms probably due to the differences in sensitivity. Our results suggest that although miRNA-seq has superior specificity, it may not detect low abundant miRNAs in urine samples. Specifically, miRNA-seq did not detect some sequences which were identified by qRT-PCR. On the other hand, the qRT-PCR analysis was not able to detect the miRNA isoforms, which made up the majority of miRNA changes detected by NGS.ConclusionsTo our knowledge, this is the first time that miRNA profiling platforms including NGS have been compared in urine specimen. miRNAs identified by both platforms, let-7d, miR-203, and miR-320, may potentially serve as promising novel urinary biomarkers for drug induced renal tubular epithelial injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.