A series of ferrocenyl-arene dyads, Fc-CtC-Ar, trans-Fc-CHdCH-Ar, and Fc-CHd CH-CHdCH-Ar (Ar ) phenyl, 1-naphthyl, 2-naphthyl, 9-phenanthryl, 9-anthryl, 1-pyrenyl, 3-perylenyl) have been synthesized. Their structures and spectroelectrochemical properties are discussed. The molecular structures of several have been determined by X-ray diffraction and the observed structures compared with global free-energy minimized calculated structures. In the solid state all ethynyl dyads have the aromatic ring orthogonal to the ferrocenyl cyclopentadienyl rings, whereas calculations predict a coplanar orientation. Calculated and observed structures agree for the ethenyl dyads with the rings orthogonal and coplanar for the anthryl and pyrenyl dyads, respectively. In most cases the solid-state structures are stabilized by offset π-stacking interactions between the polycyclic hydrocarbon rings. The two bands in the electronic spectra of the neutral dyads are due to the individual aryl and ferrocenyl end-groups. Upon oxidation at the [Fc] +/0 couple, the ferrocenyl transition is replaced by LMCT bands at lower energy and a new weak band in the NIR assigned to a Fc + r aryl transition; these assignments are supported by resonance Raman spectra, and the energy of the Fc + r aryl transition correlates with the ionization energy of the aryl group. These are therefore electrochromic dyads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.