SummaryIn the past, ultrastructural investigations of Leishmania mexicana amastigotes revealed structures that were tentatively identified as autophagosomes. This study has now provided definitive data that autophagy occurs in the parasite during differentiation both to metacyclic promastigotes and to amastigotes, autophagosomes being particularly numerous during metacyclic to amastigote form transformation. Moreover, the results demonstrate that inhibiting two major lysosomal cysteine peptidases (CPA and CPB) or removing their genes not only interferes with the autophagy pathway but also prevents metacyclogenesis and transformation to amastigotes, thus adding support to the hypothesis that autophagy is required for cell differentiation. The study suggests that L. mexicana CPA and CPB perform similar roles to the aspartic peptidase PEP4 and the serine peptidase PRB1 in Saccharomyces cerevisiae. The results also provide an explanation for why L. mexicana CPA/ CPB-deficient mutants transform to amastigotes very poorly and lack virulence in macrophages and mice.
A new method is described which has made possible the long-term axenic cultivation of Leishmania mexicana amastigote-like forms in Schneider's Drosophila medium supplemented with 20% (v/v) foetal calf serum. Unlike previous methods, it utilizes direct culture of parasites obtained from the lesions of infected animals rather than adaptation of promastigotes in vitro. Ultrastructural (possession of megasomes), biochemical (cysteine proteinase activity and gelatin SDS-PAGE banding pattern) and infectivity (in vivo) data are presented which show the close similarity of the cultured forms to lesion amastigotes. The axenically cultured forms grew optimally at a temperature of 32-33 degrees C, providing further evidence for their amastigote nature. It was found that adjustment of the pH of the growth medium to 5.4 was required in order to retain the amastigote morphology of the cultured parasites. This supports the notion that leishmanial amastigotes are acidophiles.
African trypanosomes present several features of interest to cell biologists. These include: a repressible single mitochondrion with a large mass of mitochondrial DNA, the kinetoplast; a special organelle, the glycosome, which houses the enzymes of the glycolytic chain; a surface coat of variable glycoprotein which enables the parasite to evade the mammalian host's immune response; and a unique flagellum-to-host attachment mechanism associated with novel cytoskeletal elements. Trypanosome development during the life cycle involves cyclical activation and repression of genes controlling these activities. Understanding the complexity of parasite development in the tsetse fly vector is especially challenging but may help to suggest new methods for the control of trypanosomiasis.
SummaryPolo-like kinases (PLKs) are conserved eukaryotic cell cycle regulators, which play multiple roles, particularly during mitosis. The function of Trypanosoma brucei PLK was investigated in procyclic and bloodstream-form parasites. In procyclic trypanosomes, RNA interference (RNAi) of PLK, or overexpression of TY1-epitope-tagged PLK (PLKty), but not overexpression of a kinase-dead variant, resulted in the accumulation of cells that had divided their nucleus but not their kinetoplast (2N1K cells). Analysis of basal bodies and flagella in these cells suggested the defect in kinetoplast division arose because of an inhibition of basal body duplication, which occurred when PLK expression levels were altered. Additionally, a defect in kDNA replication was observed in the 2N1K cells. However, the 2N1K cells obtained by each approach were not equivalent. Following PLK depletion, the single kinetoplast was predominantly located between the two divided nuclei, while in cells overexpressing PLKty, the kinetoplast was mainly found at the posterior end of the cell, suggesting a role for PLK kinase activity in basal body and kinetoplast migration. PLK RNAi in bloodstream trypanosomes also delayed kinetoplast division, and was further observed to inhibit furrow ingression during cytokinesis. Notably, no additional roles were detected for trypanosome PLK in mitosis, setting this protein kinase apart from its counterparts in other eukaryotes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.