Purpose
Radiotherapy is the mainstay in the treatment of locally inoperable tumors. Interstitial electronic needle-based kilovoltage brachytherapy (EBT) could be an economic alternative to high-dose-rate (HDR) brachytherapy or permanent seed implantation (PSI). In this work, we evaluated if locally inoperable tumors treated with PSI at our institution may be suitable for EBT.
Material and methods
A total of 10 post-interventional computed tomography (CT) scans of patients, who received PSI and simulated stepping-source EBT applied with Intrabeam system and needle applicator were used. EBT treatment planning software with 3-dimensional image and projection of applicator were applied for designing trajectories and establishing dwell positions. Dwell position doses were summarized, and doses covering 90% of the target volume (D
90
) achieved with stepping-source EBT were compared to those of PSI. Additionally, conformality of dose distributions and total irradiation time were assessed using conformation number (CN) or conformal index (COIN).
Results
In all patients, D
90
of EBT exceeded the prescribed dose or D
90
of PSI on average by 4.7% or 21.3% relative to the prescribed dose, respectively. Mean number of trajectories was 5.0 for EBT and 6.9 for PSI. Average CN/COIN for EBT was 0.69, with a mean irradiation time of 27.8 minutes for standardized dose of 13 Gy.
Conclusions
Stepping-source EBT allowed for a conformal treatment of inoperable interstitial tumors with similar D
90
. Fewer trajectories were required for EBT in majority of cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.