Uncertainty quantification (UQ) has recently become an important part of the design process of countless engineering applications. However, up to now in computational fluid dynamics (CFD) the errors introduced by the turbulent viscosity models in Reynolds-Averaged Navier Stokes (RANS) models have often been neglected in UQ studies. Although Direct Numerical Simulations (DNS) are physically correct, obtaining a large enough set of DNS data for UQ studies is currently computationally intractable.UQ based only on RANS simulations or on DNS often leads to physical and statistical inaccuracies in the output probability distribution functions (PDF). Therefore, three hybrid methods combining both RANS simulations and DNS to perform non-intrusive UQ are suggested in this work. Low-fidelity RANS simulations and high-fidelity DNS are combined to give an approximation of an output PDF using the advantages of both data sets: the physical accuracy via the DNS and the statistical accuracy via the RANS simulations. The hybrid methods are applied to the flow over 2D periodically arranged hills. It is shown that the Gaussian CoKriging (GCK) method is the best hybrid method and that a non-intrusive hybrid UQ approach combining both DNS and RANS simulations is possible, with both physically more accurate and statistically better PDF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.