Biologists are often confronted with high levels of unexplained variation when studying the processes that determine genetic and species diversity. Here, we argue that eco-evolutionary interactions might often play an important role during colonization and have longstanding effects on populations and communities. Adaptation following colonization can produce a strong positive feedback loop that promotes priority effects and context-dependent trajectories of population or species assembly. We establish how monopolization, and more generally evolution-mediated priority effects, influence ecological patterns at multiple scales of space, time, and biological organization. We then highlight the underappreciated implications for our understanding of population and landscape genetics, adaptive evolution, community diversity, biogeography, and conservation biology. We indicate multiple future directions for research, including extending theory beyond competition.
The field of eco‐evolutionary dynamics is developing rapidly, with a growing number of well‐designed experiments quantifying the impact of evolution on ecological processes and patterns, ranging from population demography to community composition and ecosystem functioning. The key challenge remains to transfer the insights of these proof‐of‐principle experiments to natural settings, where multiple species interact and the dynamics are far more complex than those studied in most experiments. Here, we discuss potential pitfalls of building a framework on eco‐evolutionary dynamics that is based on data on single species studied in isolation from interspecific interactions, which can lead to both under‐ and overestimation of the impact of evolution on ecological processes. Underestimation of evolution‐driven ecological changes could occur in a single‐species approach when the focal species is involved in co‐evolutionary dynamics, whereas overestimation might occur due to increased rates of evolution following ecological release of the focal species. In order to develop a multi‐species perspective on eco‐evolutionary dynamics, we discuss the need for a broad‐sense definition of “eco‐evolutionary feedbacks” that includes any reciprocal interaction between ecological and evolutionary processes, next to a narrow‐sense definition that refers to interactions that directly feed back on the interactor that evolves. We discuss the challenges and opportunities of using more natural settings in eco‐evolutionary studies by gradually adding complexity: (a) multiple interacting species within a guild, (b) food web interactions and (c) evolving metacommunities in multiple habitat patches in a landscape. A literature survey indicated that only a few studies on microbial systems so far developed a truly multi‐species approach in their analysis of eco‐evolutionary dynamics, and mostly so in artificially constructed communities. Finally, we provide a road map of methods to study eco‐evolutionary dynamics in more natural settings. Eco‐evolutionary studies involving multiple species are necessarily demanding and might require intensive collaboration among research teams, but are highly needed. A http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.13261/suppinfo is available for this article.
There is growing evidence of rapid genetic adaptation of natural populations to environmental change, opening the perspective that evolutionary trait change may subsequently impact ecological processes such as population dynamics, community composition, and ecosystem functioning. To study such eco‐evolutionary feedbacks in natural populations, however, requires samples across time. Here, we capitalize on a resurrection ecology study that documented rapid and adaptive evolution in a natural population of the water flea Daphnia magna in response to strong changes in predation pressure by fish, and carry out a follow‐up mesocosm experiment to test whether the observed genetic changes influence population dynamics and top‐down control of phytoplankton. We inoculated populations of the water flea D. magna derived from three time periods of the same natural population known to have genetically adapted to changes in predation pressure in replicate mesocosms and monitored both Daphnia population densities and phytoplankton biomass in the presence and absence of fish. Our results revealed differences in population dynamics and top‐down control of algae between mesocosms harboring populations from the time period before, during, and after a peak in fish predation pressure caused by human fish stocking. The differences, however, deviated from our a priori expectations. An S‐map approach on time series revealed that the interactions between adults and juveniles strongly impacted the dynamics of populations and their top‐down control on algae in the mesocosms, and that the strength of these interactions was modulated by rapid evolution as it occurred in nature. Our study provides an example of an evolutionary response that fundamentally alters the processes structuring population dynamics and impacts ecosystem features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.