A new microfluidic approach for charge-based particle separation using combined hydrodynamic and electrokinetic effects is presented. A recirculating flow pattern is employed, generated through application of bi-directional flow in a narrow glass microchannel incorporating diverging or converging segments at both ends. The bi-directional flow in turn is a result of opposing pressure-driven flow and electro-osmotic flow in the device. Trapping and preconcentration of charged particles is observed in the recirculating flow, under conditions where the average net velocity of the particles themselves approaches zero. This phenomenon is termed flow-induced electrokinetic trapping (FIET). Importantly, the electrophoretic mobility (zeta potential) of the particles determines the flow conditions required for trapping. In this paper, we exploit FIET for the first time to perform particle separations. Using a non-uniform channel, one type of particle can be trapped according to its zeta-potential, while particles with higher or lower zeta-potentials are flushed away with the pressure-driven or electro-osmotic components, respectively, of the flow. This was demonstrated using simple mixtures of two polystyrene bead types having approximately the same size (3 microm) but different zeta potentials (differences were in the order of 25 to 40 mV). To gain more insight into the separation mechanism, particle separations in straight, 3 cm-long microchannels with uniform cross-section were also studied under conditions of bi-directional flow without trapping. A thorough theoretical analysis confirmed that trapping occurs when electrokinetic and pressure-driven particle velocities are equal and opposite throughout the diverging segment. This makes it possible to predict the pressure and electric field conditions required to separate particles having defined zeta potentials.
In this paper we present our first results on the realization of stable water/octanol, two-phase flows inside poly(dimethylsiloxane) (PDMS) microchannels. Native PDMS microchannels were coated with high molecular weight polymers to change the surface properties of the microchannels and thus stabilize the laminar flow profile. The polymers poly(2-hydroxyethyl methacrylate), poly(vinyl pyrrolidone), poly(ethylene oxide), poly(ethylene glycol), and poly(vinyl alcohol) were assessed for their quality as stabilization coatings after deposition from flowing and stationary solutions. Additionally, the influence of coating the microchannels homogeneously with a single kind of polymer or heterogeneously with two different polymers was investigated. From the experimental observations, it can be concluded that homogeneous polymer coatings with poly(2-hydroxyethyl methacrylate) and poly(vinyl pyrrolidone) led to the effective stabilization of laminar water/octanol flows. Furthermore, heterogeneous coatings led to two-phase flows which had a better-defined and more stable interface over long distances (i.e., 40-mm-long microchannels). Finally, the partitioning of fuchsin dye in the coated microchannels was demonstrated, establishing the feasibility of the use of the polymer-coated PDMS microchannels for determination of logP values in laminar octanol/water flows.
BackgroundHigh-sensitivity cardiac troponins (hs-cTn) are the preferred biomarkers to detect myocardial injury, making them promising risk-stratifying tools for patients with symptoms of chest pain. However, circulating hs-cTn are also elevated in other conditions like renal dysfunction, complicating appropriate interpretation of low-level hs-cTn concentrations.MethodsA cross-sectional analysis was performed in 1864 patients with symptoms of chest discomfort from the cardiology outpatient department who underwent cardiac computed tomographic angiography (CCTA). Serum samples were analyzed using hs-cTnT and hs-cTnI assays. Renal function was measured by the estimated glomerular filtration rate (eGFR), established from serum creatinine and cystatin C. On follow-up, the incidence of adverse events was assessed.ResultsMedian hs-cTnT and hs-cTnI concentrations were 7.2(5.8–9.2) ng/L and 2.6(1.8–4.1) ng/L, respectively. Multivariable regression analysis revealed that both assay results were more strongly associated with eGFR (hs-cTnT:stβ:-0.290;hs-cTnI:stβ:-0.222) than with cardiac imaging parameters, such as coronary calcium score, CCTA plaque severity score and left ventricular mass (all p<0.01). Furthermore, survival analysis indicated lower relative risks in patients with normal compared to reduced renal function for hs-cTnT [HR(95%CI), 1.02(1.00–1.03) compared to 1.07(1.05–1.09)] and hs-cTnI [1.01(1.00–1.01) compared to 1.02(1.01–1.02)] (all p<0.001).ConclusionIn patients with chest discomfort, we identified an independent influence of renal function on hs-cTn concentrations besides CAD, that affected the association of hs-cTn concentrations with adverse events. Estimating renal function is therefore warranted when interpreting baseline hs-cTn concentrations.
This paper describes a new way to perform hydrodynamic chromatography (HDC) for the size separation of particles based on a unique recirculating flow pattern. Pressure-driven (PF) and electro-osmotic flows (EOF) are opposed in narrow glass microchannels that expand at both ends. The resulting bidirectional flow turns into recirculating flow because of nonuniform microchannel dimensions. This hydrodynamic effect, combined with the electrokinetic migration of the particles themselves, results in a trapping phenomenon, which we have termed flow-induced electrokinetic trapping (FIET). In this paper, we exploit recirculating flow and FIET to perform a size-based separation of samples of microparticles trapped in a short separation channel using a HDC approach. Because these particles have the same charge (same zeta potential), they exhibit the same electrophoretic mobility, but they can be separated according to size in the recirculating flow. While trapped, particles have a net drift velocity toward the low-pressure end of the channel. When, because of a change in the externally applied PF or electric field, the sign of the net drift velocity reverses, particles can escape the separation channel in the direction of EOF. Larger particles exhibit a larger net drift velocity opposing EOF, so that the smaller particles escape the separation channel first. In the example presented here, a sample plug containing 2.33 and 2.82 microm polymer particles was introduced from the inlet into a 3-mm-long separation channel and trapped. Through tuning of the electric field with respect to the applied PF, the particles could be separated, with the advantage that larger particles remained trapped. The separation of particles with less than 500 nm differences in diameter was performed with an analytical resolution comparable to that of baseline separation in chromatography. When the sample was not trapped in the separation channel but located further downstream, separations could be carried out continuously rather than in batch. Smaller particles could successfully pass through the separation channel, and particles were separated by size. One of the main advantages of exploiting FIET for HDC is that this method can be applied in quite short (a few millimeters) channel geometries. This is in great contrast to examples published to date for the separation of nanoparticles in much longer micro- and nanochannels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.