The general application of glycoside phosphorylases such as cellobiose phosphorylase (CP) for glycoside synthesis is hindered by their relatively narrow substrate specificity. We have previously reported on the creation of Cellulomonas uda CP enzyme variants with either modified donor or acceptor specificity. Remarkably, in this study it was found that the donor mutant also displays broadened acceptor specificity towards several beta-glucosides. Triple mutants containing donor (T508I/N667A) as well as acceptor mutations (E649C or E649G) also display a broader acceptor specificity than any of the parent enzymes. Moreover, further broadening of the acceptor specificity has been achieved by site-saturation mutagenesis of residues near the active site entrance. The best enzyme variant contains the additional N156D and N163D mutations and is active towards various alkyl beta-glucosides, methyl alpha-glucoside and cellobiose. In comparison with the wild-type C. uda CP enzyme, which cannot accept anomerically substituted glucosides at all, the obtained increase in substrate specificity is significant. The described CP enzyme variants should be useful for the synthesis of cellobiosides and other glycosides with prebiotic and pharmaceutical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.