Pediatric acute myeloid leukemia (pedAML) is a heterogeneous blood cancer that affects children. Although survival rates have significantly improved over the past few decades, 20–30% of children will succumb due to treatment-related toxicity or relapse. The molecular characterization of the leukemic stem cell, shown to be responsible for relapse, is needed to improve treatment options and survival. Recently, it has become clear that non-coding RNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), play a role in the development of human diseases, including pediatric cancer. Nevertheless, non-coding RNA expression data in pedAML are scarce. Here, we explored lncRNA (n = 30168) and miRNA (n = 627) expression in pedAML subpopulations (leukemic stem cells (LSCs) and leukemic blasts (L-blasts)) and their normal counterparts (hematopoietic stem cells and control myeloblasts). The potential regulatory activity of differentially expressed lncRNAs in LSCs (unique or shared with the L-blast comparison) on miRNAs was assessed. Moreover, pre-ranked gene set enrichment analyses of (anti-) correlated protein-coding genes were performed to predict the functional relevance of the differentially upregulated lncRNAs in LSCs (unique or shared with the L-blast comparison). In conclusion, this study provides a catalog of non-coding RNAs with a potential role in the pathogenesis of pedAML, paving the way for further translational research studies.
It has been shown that a single injection of 8.0 mg/kg of the cis (Pt(NH3)2cl2) in normal saline is effective in regressing solid Sarcoma-180 tumors in Swiss White mice, with no apparent irreversible damage to the host. Present investigations were undertaken to study the fine structure of Sarcoma-180 under experimental and control conditions. Platinum injections were made on day 10, (taking the tumor implant as day 0), and the animals were sacrificed at 2 day intervals for 12 days after the injections. The tissue from injected and uninjected animals was processed for electron microscopic studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.