The effect of the protein environment on the formation and stabilization of an elusive catalytically active polyoxometalate (POM) species, K [Hf(α -P W O )] (1), is reported. In the co-crystal of hen egg-white lysozyme (HEWL) with 1, the catalytically active monomeric species is observed, originating from the dimeric 1:2 POM form, while it is intrinsically unstable under physiological pH conditions. The protein-assisted dissociation of the dimeric POM was rationalized by means of DFT calculations. The dissociation process is unfavorable in bulk water, but becomes favorable in the protein-POM complex due to the low dielectric response at the protein surface. The crystal structure shows that the monomeric form is stabilized by electrostatic and water-mediated hydrogen bonding interactions with the protein. It interacts at three distinct sites, close to the aspartate-containing hydrolysis sites, demonstrating high selectivity towards peptide bonds containing this residue.
This study represents the first example of protein hydrolysis at pH = 7.4 and 60 °C by a metal-substituted polyoxometalate (POM) in the presence of a zwitterionic surfactant. Edman degradation results show that in the presence of 0.5% w/v 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) detergent, a Zr(IV)-substituted Wells–Dawson-type POM, K15H[Zr(α2-P2W17O61)2]·25H2O (Zr1-WD2), selectively hydrolyzes human serum albumin exclusively at peptide bonds involving Asp or Glu residues, which contain carboxyl groups in their side chains. The selectivity and extent of protein cleavage are tuned by the CHAPS surfactant by an unfolding mechanism that provides POM access to the hydrolyzed peptide bonds.
Four Wells-Dawson type metal-substituted polyoxometalates (MSPs), 1:2 Zr IV -Wells-Dawson [Zr IV (α 2 -P 2 W 17 O 61 )] 8-(1), 1:1 Co II -Wells-Dawson [Co II (α 2 -P 2 W 17 O 61 )] 10-(2), 1:1 Ni II -Wells-Dawson [Ni II (α 2 -P 2 W 17 O 61 )] 10-(3) and 1:1 Cu II -Wells-Dawson [Cu II (α 2 -P 2 W 17 O 61 )] 10- (4), which differ in the nature of the imbedded metal ion, were examined in co-crystallization experiments with a protein Hen Egg White Lysozyme (HEWL). Single crystal X-ray structures of four noncovalent complexes between POMs and HEWL have been determined, and the influence of the type of substituted metal on the mode of POM binding to a [a]
Redox reactions between polyoxometalates (POMs) and biologically relevant molecules have been virtually unexplored but are important, considering the growing interest in the biological applications of POMs. In this work we give a detailed account on the redox behavior of CeIV-substituted polyoxometalates (CeIV-POMs) toward a range of amino acids and peptides. CeIV-POMs have been shown to act as artificial proteases that promote the selective hydrolysis of peptide bonds. In presence of a protein, a concomitant reduction of CeIV to CeIII ion is frequently observed, leading us to examine the origins of this redox reaction by first using amino acid building blocks as simple models. Among all of the examined amino acids, cysteine (Cys) showed the highest activity in reducing CeIV-POMs to CeIII-POMs, followed by the aromatic amino acids tryptophan (Trp), tyrosine (Tyr), histidine (His), and phenylalanine (Phe). While the redox reaction with Cys afforded the well-defined product cystine, no oxidation products were detected for the Trp, His, Tyr, and Phe amino acids after their reaction with CeIV-POMs, suggesting a radical pathway in which the solvent likely regenerates the amino acid. In general, the rate of redox reactions increased upon increasing the pD, temperature, and ionic strength of the reaction. Moreover, the redox reaction is highly sensitive to the type of polyoxometalate scaffold, as complexation of CeIV to a Keggin (K) or Wells–Dawson (WD) polyoxotungstate anion resulted in a large difference in the rate of redox reaction for both Cys and aromatic amino acids. The reduction of CeIVK was at least 1 order of magnitude faster in comparison to CeIVWD, in accordance with the higher redox potential of CeIVK in comparison to CeIVWD. The reaction of CeIVPOMs with a range of peptides containing redox-active amino acids revealed that the redox reaction is influenced by their coordination mode with CeIV ion, but in all examined peptides the redox reaction is favored in comparison to the hydrolytic cleavage of the peptide bond.
The successful cocrystallization of the noncovalent complex formed between (Et2NH2)8[{α‐PW11O39Zr‐(μ‐OH)(H2O)}2]·7H2O Keggin polyoxometalate (2) and Hen Egg White Lysozyme (HEWL) protein is reported. The resulting structural model revealed interaction between monomeric [Zr(PW11O39)]4−(1), which is a postulated catalytically active species, and the protein in two positions in the asymmetric unit. The first position (occupancy 36%) confirms the previously observed binding sites on the protein surface, whereas the second position (occupancy 14%) provides novel insights into the hydrolytic mechanisms of ZrIV‐substituted polyoxometalates. The new interaction site occurs at the Asn65 residue, which is directly next to the Asp66–Gly67 peptide bond that was identified recently as a cleavage site in the polyoxometalate‐catalysed hydrolysis of HEWL. Furthermore, in this newly discovered binding site, the monomeric polyoxometalate 1 is observed to bind directly to the side chain of the Asn65 residue. This binding of ZrIV as a Lewis‐acid metal to the carbonyl O atom of the Asn65 side chain is very similar to the intermediate state proposed in density functional theory (DFT) studies in which ZrIV activates the peptide bond via interaction with its carbonyl O atom, and can be thus regarded as a model for interaction between ZrIV and a peptide bond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.