Growth on transition metal substrates is becoming a method of choice to prepare large-area graphene foils. In the case of nickel, where carbon has a significant solubility, such a growth process includes at least two elementary steps: (1) carbon dissolution into the metal, and (2) graphene precipitation at the surface. Here, we dissolve calibrated amounts of carbon in nickel films, using carbon ion implantation, and annealing at 725 • C or 900 • C. We then use transmission electron microscopy to analyse the precipitation process in detail: the latter appears to imply carbon diffusion over large distances and at least two distinct microscopic mechanisms.
International audienceThe chemistry of aryldiazonium salts has been thoroughly used in recent years to graft in a very simple and robust way ultrathin polyphenylene-like films on a broad range of surfaces. We show here that the same chemistry can be used to obtain self-adhesive surfaces. This target was reached in a simple way by coating various surfaces with chemisorbed organic films containing active aryldiazonium salts. These self-adhesive surfaces are then put into contact with various species (molecules, polymers, nanoparticles, nanotubes, graphene flakes, etc.) that react either spontaneously or under activation with the immobilized aryldiazonium salts. Our self-adhesive surfaces were synthesized following a simple aqueous two-step protocol based on p-phenylenediamine diazotisation. The first diazotisation step results in the robust grafting of thin polyaminophenylene (PAP) layers onto the surface. The second diazotisation step changed the grafted PAP film into a poly-aryldiazonium polymer (PDP) film. The covalent grafting between those self-adhesive surfaces and the target species was achieved by direct contact or by immersion of the self-adhesive surfaces in solution. We present in this preliminary work the grafting of multi-wall carbon nanotubes (MWCNTs), flakes of highly oriented pyrolytic graphite (HOPG), various organic compounds and copper nanoparticles. We also tested these immobilized aryldiazonium salts as electropolymerization initiators for the grafting-to process
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.