In the thermophilic ant genus Cataglyphis, species differing in their physical caste system have developed alternative mechanisms to face extreme heat by physiological and/or behavioural adaptations. In this study, we tested whether thermal tolerance is related to worker size in the ant Cataglyphis cursor that presents intermediate worker size compared with previously studied species (size range 3.5-10 mm). Thermal tolerance at two temperatures was tested in the laboratory on colonies originating from two habitats (seaside versus vineyard), known to differ in average worker size. As expected large workers were more resistant to high temperature than small workers, but the effect of worker size on thermal resistance was less pronounced under the more extreme temperatures. The pattern of thermal tolerance was similar in the two habitat types. After controlling for worker size, worker thermal tolerance significantly varied amongst colonies, but this variation was not related to colony size. Our results suggest that a higher thermal tolerance can confer an advantage to larger workers especially during foraging and are discussed in the context of the evolution of worker size in ants.
Under complementary sex determination (CSD), females of Hymenoptera arise from diploid, fertilized eggs and males from haploid, unfertilized eggs. Incidentally, fertilized eggs that inherit two identical alleles at the CSD locus will develop into diploid males. Diploid males are usually unviable or sterile. In a few species, however, they produce diploid sperm and father a triploid female progeny. Diploid males have been reported in a number of social Hymenoptera, but the occurrence of triploid females has hardly ever been documented. Here, we report the presence of triploid females, diploid males, and diploid sperm (produced by diploid males and stored in queen spermathecae) in the ant Tapinoma erraticum. Moreover, we show variations in the frequency of triploids among female castes: Triploid females are more frequent among workers than virgin queens; they are absent among mated, reproductive queens. The frequency of triploid workers also varies between populations and between nests within populations.
Abstract. In social Hymenoptera, queens receive a given amount of sperm during a single or multiple inseminations once and for all. The amount of sperm stored at mating determines the maximum number of fertilized eggs queens can produce for the rest of their reproductive life. We propose flow cytometry (FCM) as a method to estimate the concentration of sperm cells, as well as their ploidy level, in queens spermathecae. Our data, obtained from 5 ant species, show that FCM is precise, repeatable, easy to conduct and rapid. Estimates of variation of spermathecal content always remain below 10 %, and samples can be analysed in less than 5 minutes. Flow cytometry appears as an excellent method for comparative analyses of sperm number within and between ant species.
Under the hymenopteran single-locus complementary sex-determination system, production of diploid males results from homozygosity at the sex-determiner locus. This arises when both parents transmit identical alleles at the locus to the offspring. In species reproducing asexually through thelytokous parthenogenesis, production of diploid males may also occur when the sex locus undergoes recombination and becomes homozygous in the offspring. Diploid males represent a substantial genetic load in hymenopteran populations because they often produce unviable sperm or sire sterile triploid female offspring. In the Mediterranean ant Cataglyphis cursor, the queen and workers can produce female offspring through automictic thelytokous parthenogenesis with central fusion, a mode of parthenogenesis that increases homozygosity. We report, for the first time, the presence of about 39 % of colonies producing adult diploid males (seven colonies out of 18). Overall, 8 % of adult males were diploid (12 diploid males out of the 146 males genotyped). Genotyping workers from the seven colonies producing diploid males showed that three diploid males were sons of queens and produced by thelytoky, six were probably sons of workers also produced by thelytoky and three were non-natal. Furthermore, the mating of a diploid male with two virgin queens in the laboratory led to the production of sterile triploid workers, which shows that diploid males in C. cursor are fertile, mate successfully and produce viable and functional but probably sterile female offspring. Because diploid males originate from thelytokous reproduction, they are only produced during sexual production and hence do not impair colony growth, which could explain why they are not removed at early brood stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.