Fluorescence microscopy has been used to study the cellular distribution properties of a series of DNA binding cationic compounds related to the potent antiparasitic drug furamidine (DB75). The compounds tested bear a diphenylfuran or a phenylfuranbenzimidazole unfused aromatic core substituted with one or two amidine or imidazoline groups. The synthesis of five new compounds is reported. The B16 melanoma cell line was used to compare the capacities of mono-, bis-, and tetracations to enter the cell and nuclei. The high-resolution fluorescence pictures show that in the furamidine series, the compounds with two or four positive charges selectively accumulate in the cell nuclei whereas, in most cases, those bearing only one positive charge show reduced cell uptake capacities. One of the monocationic compounds, DB607, distributes in the cytoplasm, possibly in mitochondria, with no distinct nuclear accumulation. In sharp contrast, furamidine and benzimidazole analogues, including the drug DB293 that forms DNA minor groove dimers, efficiently accumulate in the cell nuclei and the intranuclear distribution of these DNA minor groove binders is significantly different from that seen with the DNA intercalating drug propidium iodide. The results suggest that the presence of two amidine terminal groups plays a role in facilitating nuclear accumulation into cells, probably as a result of nucleic acid binding. The determination of DNA melting temperature increases on addition of these compounds supports the importance of DNA binding in nuclear uptake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.