Hypermutation is an important mechanism used by different Salmonella enterica subspecies enterica to regulate genetic stability in adaptation to changing environments, including antimicrobial treatments and industrial processes. Strong hypermutator strains generally contain a mutation in genes of the methyl mismatch repair (MMR) system and have mutation frequencies up to 1000-fold higher than wild type strains. The objectives of this study were to determine the distribution of mutation frequencies from a collection of 209 Salmonella strains, to genetically characterize a strong mutator, and to study MMR mutated protein-DNA binding interactions. Only one strain of S. Heidelberg was determined to have a hypermutator phenotype by virtue of its high mutation rate. Sequencing of genes of the MMR system showed a 12bp deletion in the mutS gene was present. The MMR mutated protein-DNA binding interactions were studied by bioanalysis, using the available crystal structure of a similar MutS protein from Escherichia coli. This analysis showed the small deletion in the Salmonella MutS was localized within the core domain. A retardation assay with MutS from hypermutable and wild type strains showed this mutation has no effect on MutS DNA binding. A better understanding of the genetic mechanisms of hypermutation will help to anticipate the behavior of hypermutator strains in various conditions.
A beta-lactamase gene (cfxA3, 966 bp) was isolated from a beta-lactam-resistant Capnocytophaga ochracea clinical isolate and amplified using primers from the cfxA gene of Bacteroides vulgatus. The MICs of thirdgeneration cephalosporins were much higher than those of the transconjugant Escherichia coli strain. The deduced protein sequence, by comparison with CfxA2 of Prevotella intermedia, had a Y239D substitution and possessed the characteristics of a class A, group 2e beta-lactamase.
The distributions of the antibiotic resistance patterns in a population of Staphylococcus aureus isolates from a teaching hospital were studied over a 9-year period. The results indicate the existence of successive major epidemic methicillin-resistant strains and the emergence of a methicillin-susceptible strain with an unusual resistance pattern. Our findings suggest that this methicillin-susceptible S. aureus strain could be derived from the dominant gentamicin-susceptible methicillin-resistant S. aureus strain with the loss of a 40-kb DNA fragment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.