In this paper, we investigate the properties of solitonic structures arising in quadratic media. First, we recall the derivation of systems governing the interaction process for waves propagating in such media and we check the local and global well-posedness of the corresponding Cauchy problem. Then, we look for stationary states in the context of normal or anomalous dispersion regimes, that lead us to either elliptic or non-elliptic systems and we address the problem of orbital stability. Finally, some numerical experiments are carried out in order to compute localized states for several regimes and to study dynamic stability as well as long-time asymptotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.