Abstract. Understanding wet avalanche intensity and the role of past environmental changes on wet avalanche occurrence is a main concern especially in the context of a warming climate and accelerated environmental mutations. Avalanches are closely related to fast cryosphere changes and may cause major threats to human society. Here, we used the sedimentary 15 archive of the alpine Lake Lauvitel (western French Alps) to establish the first long-term avalanche record in this Alpine region. For this purpose, we used a novel CT scan methodology that allows the precise identification of coarse materialfrom sand to pebble -transported to the lake and embedded within the finer continuous sedimentation. We identified a total of 166 deposits over the last 3300 yrs cal. BP. In parallel, a detailed pollen analysis gave an independent record of environmental changes. Based on modern observation, lake monitoring, seismic investigations and sedimentological 20 evidences, coarse material deposits were attributed to wet avalanche events. Our results highlight the effect of vegetation cover on the avalanche hazard while a period of strong frequency increase occurred after 780 yrs cal. BP. In Lake Lauvitel, this period corresponds to a major forest clearance induced by the rise of human land-use. Climate forcing on the avalanche hazard was investigated before and after the vegetation shift. On a multi-centennial scale, wet avalanches preferably occur during periods of larger glacier extent, in which higher winter precipitations probably generate a sufficiently thick snow 25 cover. On a sub-centennial scale, avalanches are more frequent during periods of relative warming, resulting in a destabilisation of the same snow cover in spring season. Our results highlight as well the role of forest cover to mitigate wet snow avalanches occurrence. In the context of predicted warmer temperatures, this study raises the question of whether a wet avalanche hazard increase may be expected in the near future especially at higher altitudes.Clim. Past Discuss., https://doi
Understanding wet avalanche intensity and the role of past environmental changes on wet avalanche occurrence is a main concern especially in the context of a warming climate and accelerated environmental mutations. Avalanches are closely related to fast cryosphere changes and may cause major threats to human society. Here, we used the sedimentary archive of the Alpine Lake Lauvitel (Lac du Lauvitel; western French Alps) to establish the first longterm avalanche record in this Alpine region. For this purpose, we used a novel CT-scan methodology that allows the precise identification of coarse material-from sand to pebbletransported to the lake and embedded within the finer continuous sedimentation. We identified a total of 166 deposits over the last 3300 yr cal. BP. In parallel, a detailed pollen analysis gave an independent record of environmental changes. Based on modern observation, lake monitoring, seismic investigations and sedimentological evidences, coarse material deposits were attributed to wet avalanche events. Our results highlight the effect of vegetation cover on the avalanche hazard while a period of strong frequency increase occurred after 780 yr cal. BP. In Lake Lauvitel, this period corresponds to a major forest clearance induced by the rise of human land use. Climate forcing on the avalanche hazard was investigated before and after the vegetation shift. On a multicentennial scale, wet avalanches preferably occur during periods of larger glacier extent, in which higher winter precipitation probably generates a sufficiently thick snow cover. On a sub-centennial scale, avalanches are more frequent during periods of relative warming, resulting in a destabilization of the same snow cover in spring season. Our results highlight as well the role of forest cover in mitigating wet snow avalanches' occurrence. In the context of predicted warmer temperatures, this study raises the question of whether a wet avalanche hazard increase may be expected in the near future especially at higher altitudes.
Understanding wet avalanche intensity and the role of past environmental changes on wet avalanche occurrence is a main concern especially in the context of a warming climate and accelerated environmental mutations. Avalanches are closely related to fast cryosphere changes and may cause major threats to human society. Here, we used the sedimentary archive of the Alpine Lake Lauvitel (Lac du Lauvitel; western French Alps) to establish the first longterm avalanche record in this Alpine region. For this purpose, we used a novel CT-scan methodology that allows the precise identification of coarse material-from sand to pebbletransported to the lake and embedded within the finer continuous sedimentation. We identified a total of 166 deposits over the last 3300 yr cal. BP. In parallel, a detailed pollen analysis gave an independent record of environmental changes. Based on modern observation, lake monitoring, seismic investigations and sedimentological evidences, coarse material deposits were attributed to wet avalanche events. Our results highlight the effect of vegetation cover on the avalanche hazard while a period of strong frequency increase occurred after 780 yr cal. BP. In Lake Lauvitel, this period corresponds to a major forest clearance induced by the rise of human land use. Climate forcing on the avalanche hazard was investigated before and after the vegetation shift. On a multicentennial scale, wet avalanches preferably occur during periods of larger glacier extent, in which higher winter precipitation probably generates a sufficiently thick snow cover. On a sub-centennial scale, avalanches are more frequent during periods of relative warming, resulting in a destabilization of the same snow cover in spring season. Our results highlight as well the role of forest cover in mitigating wet snow avalanches' occurrence. In the context of predicted warmer temperatures, this study raises the question of whether a wet avalanche hazard increase may be expected in the near future especially at higher altitudes.
We thank the referee for his review and suggestions to improvements. Generally, we agree with all his suggestions and think they will help to clarify the manuscript. The next section presents referee comment (C) and answers to those comments (A).C1/The title could also be: Wet snow avalanches and floods: long-term evolution in the Western Alps under climate and human forcing.A1/ Please refer to answer of comment 12. My co authors and I aren't absolutely sure about forcing mechanisms related to the flood record. We would like to have the title C1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.