One of the enduring puzzles in biology and the social sciences is the origin and persistence of intraspecific cooperation and altruism in humans and other species. Hundreds of theoretical models have been proposed and there is much confusion about the relationship between these models. To clarify the situation, we developed a synthetic conceptual framework that delineates the conditions necessary for the evolution of altruism and cooperation. We show that at least one of the four following conditions needs to be fulfilled: direct benefits to the focal individual performing a cooperative act; direct or indirect information allowing a better than random guess about whether a given individual will behave cooperatively in repeated reciprocal interactions; preferential interactions between related individuals; and genetic correlation between genes coding for altruism and phenotypic traits that can be identified. When one or more of these conditions are met, altruism or cooperation can evolve if the cost‐to‐benefit ratio of altruistic and cooperative acts is greater than a threshold value. The cost‐to‐benefit ratio can be altered by coercion, punishment and policing which therefore act as mechanisms facilitating the evolution of altruism and cooperation. All the models proposed so far are explicitly or implicitly built on these general principles, allowing us to classify them into four general categories.
SAK/PLK4 is necessary for centriole duplication both in Drosophila and human cells. Drosophila cells tolerate the lack of centrioles and undertake mitosis but cannot form basal bodies and hence flagella. Human cells depleted of SAK show error-prone mitosis, likely to underlie its tumor-suppressor role.
In natural populations, dispersal tends to be limited so that individuals are in local competition with their neighbours. As a consequence, most behaviours tend to have a social component, e.g. they can be selfish, spiteful, cooperative or altruistic as usually considered in social evolutionary theory. How social behaviours translate into fitness costs and benefits depends considerably on life-history features, as well as on local demographic and ecological conditions. Over the last four decades, evolutionists have been able to explore many of the consequences of these factors for the evolution of social behaviours. In this paper, we first recall the main theoretical concepts required to understand social evolution. We then discuss how life history, demography and ecology promote or inhibit the evolution of helping behaviours, but the arguments developed for helping can be extended to essentially any social trait. The analysis suggests that, on a theoretical level, it is possible to contrast three critical benefit-to-cost ratios beyond which costly helping is selected for (three quantitative rules for the evolution of altruism). But comparison between theoretical results and empirical data has always been difficult in the literature, partly because of the perennial question of the scale at which relatedness should be measured under localized dispersal. We then provide three answers to this question.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.