The quantitative validation of reconstruction algorithms requires reliable data. Rasterized simulations are popular but they are tainted by an aliasing component that impacts the assessment of the performance of reconstruction. We introduce analytical simulation tools that are suited to parallel magnetic resonance imaging and allow one to build realistic phantoms. The proposed phantoms are composed of ellipses and regions with piecewise-polynomial boundaries, including spline contours, Bézier contours, and polygons. In addition, they take the channel sensitivity into account, for which we investigate two possible models. Our analytical formulations provide well-defined data in both the spatial and k-space domains. Our main contribution is the closed-form determination of the Fourier transforms that are involved. Experiments validate the proposed implementation. In a typical parallel magnetic resonance imaging reconstruction experiment, we quantify the bias in the overly optimistic results obtained with rasterized simulations-the inverse-crime situation. We provide a package that implements the different simulations and provide tools to guide the design of realistic phantoms.
Many recent machine learning approaches used in medical imaging are highly reliant on large amounts of image and groundtruth data. In the context of object segmentation, pixelwise annotations are extremely expensive to collect, especially in video and 3D volumes. To reduce this annotation burden, we propose a novel framework to allow annotators to simply observe the object to segment and record where they have looked at with a $200 eye gaze tracker. Our method then estimates pixel-wise probabilities for the presence of the object throughout the sequence from which we train a classifier in semi-supervised setting using a novel Expected Exponential loss function. We show that our framework provides superior performances on a wide range of medical image settings compared to existing strategies and that our method can be combined with current crowd-sourcing paradigms as well.
Recent machine learning strategies for segmentation tasks have shown great ability when trained on large pixel-wise annotated image datasets. It remains a major challenge however to aggregate such datasets, as the time and monetary cost associated with collecting extensive annotations is extremely high. This is particularly the case for generating precise pixel-wise annotations in video and volumetric image data. To this end, this work presents a novel framework to produce pixel-wise segmentations using minimal supervision. Our method relies on 2D point supervision, whereby a single 2D location within an object of interest is provided on each image of the data. Our method then estimates the object appearance in a semi-supervised fashion by learning object-image-specific features and by using these in a semi-supervised learning framework. Our object model is then used in a graph-based optimization problem that takes into account all provided locations and the image data in order to infer the complete pixel-wise segmentation. In practice, we solve this optimally as a tracking problem using a K-shortest path approach. Both the object model and segmentation are then refined iteratively to further improve the final segmentation. We show that by collecting 2D locations using a gaze tracker, our approach can provide state-of-the-art segmentations on a range of objects and image modalities (video and 3D volumes), and that these can then be used to train supervised machine learning classifiers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.