Permeabilization of the mitochondrial membranes is a crucial step in apoptosis and necrosis. This phenomenon allows the release of mitochondrial death factors which trigger or facilitate different signaling cascades ultimately causing the execution of the cell. The mitochondrial permeability transition pore (mPTP) has long been known as one of the main regulators of mitochondria during cell death. mPTP opening can lead to matrix swelling, subsequent rupture of the outer membrane and a nonspecific release of intermembrane space proteins into the cytosol. While mPTP was purportedly associated with early apoptosis, recent observations suggest that mitochondrial permeabilization mediated by mPTP is generally more closely linked to events of late apoptosis and necrosis. Mechanisms of mitochondrial membrane permeabilization during cell death, involving three different mitochondrial channels, have been postulated. These include the mPTP in the inner membrane, and the mitochondrial apoptosis-induced channel (MAC) and voltage dependent anion-selective channel (VDAC) in the outer membrane. New developments on mPTP structure and function, and the involvement of mPTP, MAC, and VDAC in permeabilization of mitochondrial membranes during cell death are explored.
Bcl-2 family proteins regulate apoptosis, in part, by controlling formation of the mitochondrial apoptosis-induced channel (MAC), which is a putative cytochrome c release channel induced early in the intrinsic apoptotic pathway. This channel activity was never observed in Bcl-2-overexpressing cells. Furthermore, MAC appears when Bax translocates to mitochondria and cytochrome c is released in cells dying by intrinsic apoptosis. Bax is a component of MAC of staurosporine-treated HeLa cells because MAC activity is immunodepleted by Bax antibodies. MAC is preferentially associated with oligomeric, not monomeric, Bax. The single channel behavior of recombinant oligomeric Bax and MAC is similar. Both channel activities are modified by cytochrome c, consistent with entrance of this protein into the pore. The mean conductance of patches of mitochondria isolated after green fluorescent protein-Bax translocation is significantly higher than those from untreated cells, consistent with onset of MAC activity. In contrast, the mean conductance of patches of mitochondria indicates MAC activity is present in apoptotic cells deficient in Bax but absent in apoptotic cells deficient in both Bax and Bak. These findings indicate Bax is a component of MAC in staurosporine-treated HeLa cells and suggest Bax and Bak are functionally redundant as components of MAC.
Programmed cell death or apoptosis is central to many physiological processes and pathological conditions such as organogenesis, tissue homeostasis, cancer, and neurodegenerative diseases. Bcl-2 family proteins tightly control this cell death program by regulating the permeabilization of the mitochondrial outer membrane and, hence, the release of cytochrome c and other pro-apoptotic factors. Control of the formation of the mitochondrial apoptosis-induced channel, or MAC, is central to the regulation of apoptosis by Bcl-2 family proteins. MAC is detected early in apoptosis by patch clamping the mitochondrial outer membrane. The focus of this review is on the regulation of MAC activity by Bcl-2 family proteins. The role of MAC as the putative cytochrome c release channel during early apoptosis and insights concerning its molecular composition are also discussed.
Permeabilization of the mitochondrial outer membrane is the commitment step in intrinsic apoptosis. This process is tightly regulated by Bcl-2 family proteins that control formation of the megachannel mitochondrial apoptosis-induced channel (MAC) 2 in this membrane. MAC formation correlates with release of pro-apoptotic factors, including cytochrome c from the intermembrane space into the cytosol, and initiates apoptosis (1-7).MAC is absent from normal mitochondria but forms in the outer membrane early in apoptosis, reaching peak conductances of 1.5-5 nS. This channel is formed in the presence of the multidomain pro-apoptotic proteins Bax and/or Bak (8 -13), and may be composed of these proteins along with other components (14, 15). Unlike Bax, Bak is normally a resident of the mitochondrial outer membrane and is bound to VDAC2, another outer membrane protein (16). However, Bak is not available for oligomerization until another pro-apoptotic protein, like t-Bid, disrupts the interaction of Bak with VDAC2. In contrast, most Bax is located in the cytoplasm until an apoptotic signal induces the translocation of Bax to the outer membrane of mitochondria and eventual Bax oligomerization in this same membrane (14, 17).Bax and Bak have multiple putative transmembrane domains; the amphipathic helices 5 and 6 of Bax are predicted to form, at least in part, the pore of the cytochrome c release channel (18). Bax lacking helices 5 and 6 does not translocate to mitochondria nor cause cytochrome c release (19,20). Given the structural similarities between Bax and Bak, the same helices may be important in formation of the MAC pore by both proteins (21). Although Bax and Bak are certainly involved in MAC formation, the exact molecular composition of this channel remains unknown.In this study we report that Bax and Bak are functionally redundant with regard to MAC formation and cytochrome c release in mouse embryonic fibroblasts (MEF). This is true despite the fact that Bak normally resides in the outer membrane, whereas Bax is generally translocated to this membrane to induce MAC formation. Our experimental design bypasses Bax translocation and any underlying autocatalytic mechanism that might be involved (22). Instead, it focuses on formation of the MAC pore. Early MAC-associated conductance increments are relatively small, suggesting that Bax-dependent formation of the cytochrome c-permeable pore does not occur prior to membrane insertion of Bax. Mathematical modeling of the conductance changes indicates that, if MAC is a circular pore assembled by sequential addition of helices 5 and 6 from Bax and/or Bak monomers, the mature, cytochrome c transportcompetent pore is likely a 9 -10-mer of these proteins. ) cell lines were cultured in Dulbecco's modified Eagle's medium with 10% fetal bovine serum, 1% nonessential amino acids, and 1% L-glutamine (23, EXPERIMENTAL PROCEDURES
Recent studies indicate that cytochrome c is released early in apoptosis without loss of integrity of the mitochondrial outer membrane in some cell types. The high-conductance mitochondrial apoptosis-induced channel (MAC) forms in the outer membrane early in apoptosis of FL5.12 cells. Physiological (micromolar) levels of cytochrome c alter MAC activity, and these effects are referred to as types 1 and 2. Type 1 effects are consistent with a partitioning of cytochrome c into the pore of MAC and include a modest decrease in conductance that is dose and voltage dependent, reversible, and has an increase in noise. Type 2 effects may correspond to "plugging" of the pore or destabilization of the open state. Type 2 effects are a dose-dependent, voltage-independent, and irreversible decrease in conductance. MAC is a heterogeneous channel with variable conductance. Cytochrome c affects MAC in a pore size-dependent manner, with maximal effects of cytochrome c on MAC with conductance of 1.9-5.4 nS. The effects of cytochrome c, RNase A, and high salt on MAC indicate that size, rather than charge, is crucial. The effects of dextran molecules of various sizes indicate that the pore diameter of MAC is slightly larger than that of 17-kDa dextran, which should be sufficient to allow the passage of 12-kDa cytochrome c. These findings are consistent with the notion that MAC is the pore through which cytochrome c is released from mitochondria during apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.