Endoplasmic reticulum (ER) stress is sensed by cells in different physiopathological conditions in which there is an accumulation of unfolded proteins in the ER. A coordinated adaptive program called the unfolded protein response is triggered and includes translation inhibition, transcriptional activation of a set of genes encoding mostly intracellular proteins, and ultimately apoptosis. Here we show that insulin-like growth factor (IGF)-binding protein-1 (IGFBP-1), a secreted protein that modulates IGF bioavailability and has other IGF-independent effects, is potently induced during ER stress in human hepatocytes. Various ER stress-inducing agents were able to increase IGFBP-1 mRNA levels, as well as cellular and secreted IGFBP-1 protein up to 20-fold. A distal regulatory region of the human IGFBP-1 gene (؊6682/؊6384) containing an activating transcription factor 4 (ATF4) composite site was required for promoter activation upon ER stress. Mutation of the ATF4 composite site led to the loss of IGFBP-1 regulation. Electrophoretic mobility shift assay revealed an ER stress-inducible complex that was displaced by an ATF4 antibody. Knockdown of ATF4 expression using two specific small interfering RNAs impaired upregulation of IGFBP-1 mRNA, which highlights the relevance of ATF4 in endogenous IGFBP-1 gene induction. In addition to intracellular proteins involved in secretory and metabolic pathways, we conclude that ER stress induces the synthesis of secreted proteins. Increased secretion of IGFBP-1 during hepatic ER stress may thus constitute a signal to modulate cell growth and metabolism and induce a systemic adaptive response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.