We show that a volatile liquid drop placed at the surface of a nonvolatile liquid pool warmer than the boiling point of the drop can be held in a Leidenfrost state even for vanishingly small superheats. Such an observation points to the importance of the substrate roughness, negligible in the case considered here, in determining the threshold Leidenfrost temperature. A theoretical model based on the one proposed by Sobac et al. [Phys. Rev. E 90, 053011 (2014)] is developed in order to rationalize the experimental data. The shapes of the drop and of the liquid substrate are analyzed. The model notably provides scalings for the vapor film thickness profile. For small drops, these scalings appear to be identical to the case of a Leidenfrost drop on a solid substrate. For large drops, in contrast, they are different, and no evidence of chimney formation has been observed either experimentally or theoretically in the range of drop sizes considered in this study. Concerning the evaporation dynamics, the radius is shown to decrease linearly with time whatever the drop size, which differs from the case of a Leidenfrost drop on a solid substrate. For high superheats, the characteristic lifetime of the drops versus the superheat follows a scaling law that is derived from the model, but, at low superheats, it deviates from this scaling by rather saturating.
We performed a series of experiments to investigate the flow of an assembly of non-cohesive spherical grains in both high and low gravity conditions (i.e. above and under the Earth's gravity). In high gravity conditions, we studied the flow of glass beads out of a cylindrical silo and the flow of metallic beads out of a vertical Hele-Shaw rectangular silo. Both silos were loaded in one of the gondolas of the Large Diameter Centrifuge facility (located at ESTEC) in which an apparent gravity up to 20 times the Earth's gravity can be established. To simulate low gravity conditions, we submitted a horizontal monolayer of metallic beads to the centrifuge force of a small rotation device (located at University of Liege). The influences of both gravity and aperture size on the mass flow were analysed in these various conditions. For the three systems (cylindrical silo, the Hele-shaw silo and the monolayer of beads), we demonstrated that (i) the square root scaling of the gravity found by Beverloo is relevant and (ii) the critical aperture size below which the flow is jammed does not significantly increase with the apparent gravity. Moreover, we studied in more details the Hele-Shaw silo in high gravity because this configuration allowed to determine local properties of the flow at the level of the aperture. We measured the velocity profiles and the packing fraction profiles for the various aperture sizes and apparent high gravities. We demonstrate the existence of a slip length for the flow at the level of the aperture. This later fact seems to result from the geometrical configuration of the silo.
In this experimental study, we report on the mixing properties of interfacial colloidal floaters (glass bubbles) by chemical and hydrodynamical currents generated by self-propelled camphor disks swimming at the air-water interface. Despite reaching a statistically stationary state for the glass bubbles distribution, those floaters always remain only partially mixed. This intermediate state results from a competition between (i) the mixing induced by the disordered motion of many camphor swimmers and (ii) the unmixing promoted by the chemical cloud attached to each individual self-propelled disk. Mixing/unmixing is characterized globally using the standard deviation of concentration and spectra, but also more locally by averaging the concentration field around a swimmer. Besides the demixing process, the system develops a "turbulentlike" concentration spectra, with a large-scale region, an inertial regime, and a Batchelor region. We show that unmixing is due to the Marangoni flow around the camphor swimmers, and is associated to compressible effects.
A specific experimental set-up has been installed in a large centrifuge facility in order to study different aspects of Leidenfrost drops under high-gravity conditions (5, 10, 15 and 20 times the Earth gravity). In particular, the drop lifetime and more precisely the variations of drop diameter vs. time have shown to be in good agreement with previous experiments and scaling analysis (Biance A.-L. et al., Phys. Fluids, 15 (2003) 1632. Moreover, so-called chimneys are expectedly observed in the large puddles, the distance between two chimneys depending linearly on the capillary length. Finally, the Leidenfrost point, i.e. the temperature above which the Leidenfrost effect takes place, was unexpectedly found to increase slightly with gravity. A qualitative explanation based on a refined model (Sobac B. et al., Phys. Rev. E, 90 (2014) 053011) recognizing the non-trivial shape of the vapor film under the drop is proposed to explain this observation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.