The Fibonacci Hamiltonian, that is a Schrödinger operator associated to a quasiperiodical Sturmian potential with respect to the golden mean has been investigated intensively in recent years. Damanik and Tcheremchantsev developed a method in [10] and used it to exhibit a non trivial dynamical upper bound for this model. In this paper, we use this method to generalize to a large family of Sturmian operators dynamical upper bounds and show at sufficently large coupling anomalous transport for operators associated to irrational number with a generic diophantine condition. As a counterexample, we exhibit a pathological irrational number which does not verify this condition and show its associated dynamic exponent only has ballistic bound. Moreover, we establish a global lower bound for the lower box counting dimension of the spectrum that is used to obtain a dynamical lower bound for bounded density irrational numbers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.