Accurate knowledge of the liver structure, including liver surface and lesion localization, is usually required in treatments such as liver tumor ablations and/or radiotherapy. This paper presents a new method and corresponding algorithm for fast segmentation of the liver and its internal lesions from CT scans. No interaction between the user and analysis system is required for initialization since the algorithm is fully automatic. A statistical model-based approach was created to distinguish hepatic tissue from other abdominal organs. It was combined to an active contour technique using gradient vector flow in order to obtain a smoother and more natural liver surface segmentation. Thereafter, automatic classification was performed to isolate hepatic lesions from liver parenchyma. Twenty-one datasets, presenting different anatomical and pathological situations, have been processed and analyzed. Special focus has been driven to the resulting processing time together with quality assessment. Our method allowed robust and efficient liver and lesion segmentations very close to the ground truth, in a relatively short processing time (average of 11.4 s for a 512 x 512-pixel slice). A volume overlap of 94.2% and an accuracy of 3.7 mm were achieved for liver surface segmentation. Sensitivity and specificity for tumor lesion detection were 82.6% and 87.5%, respectively.
The accurate knowledge of the liver structure including blood vessels topography, liver surface and lesion localizations is usually required in treatments like liver ablations and radiotherapy. In this paper, we propose an approach for automatic segmentation of liver complex geometries. It consists of applying a graph-cut method initialized by an adaptive threshold. The algorithm has been tested on 10 datasets (CT and MR). A parametric comparison with the results obtained by previous algorithms based on active contour is also carried out and discussed. Main limitations of active contour approaches result to be overcome and segmentation is improved. Feasibility to routinely use graph-cut approach for automatic liver segmentation is also demonstrated.
BackgroundThe objective of this work is to evaluate a new concept of intraoperative three-dimensional (3D) visualization system to support hepatectomy. The Resection Map aims to provide accurate cartography for surgeons, who can therefore anticipate risks, increase their confidence and achieve safer liver resection.MethodsIn an experimental prospective cohort study, ten consecutive patients admitted for hepatectomy to three European hospitals were selected. Liver structures (portal veins, hepatic veins, tumours and parenchyma) were segmented from a recent computed tomography (CT) study of each patient. The surgeon planned the resection preoperatively and read the Resection Map as reference guidance during the procedure. Objective (amount of bleeding, tumour resection margin and operating time) and subjective parameters were retrieved after each case.ResultsThree different surgeons operated on seven patients with the navigation aid of the Resection Map. Veins displayed in the Resection Map were identified during the surgical procedure in 70.1% of cases, depending mainly on size. Surgeons were able to track resection progress and experienced improved orientation and increased confidence during the procedure.ConclusionsThe Resection Map is a pragmatic solution to enhance the orientation and confidence of the surgeon. Further studies are needed to demonstrate improvement in patient safety.
This study showed that combining different PET segmentation methods by the use of a consensus algorithm offers robustness against the variable performance of individual segmentation methods and this approach would therefore be useful in radiation oncology. It might also be relevant for other scenarios such as the merging of expert recommendations in clinical routine and trials or the multiobserver generation of contours for standardization of automatic contouring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.