This paper describes recent experimental results on the strain distributions developed during bending of AA6xxx sheet for automotive applications, together with a new model for the mechanics and metallurgy of strain localization during bending. A detailed microscopic study (optical and SEM/EBSD) shows that damage development during bending to strains of order unity is controlled by through-thickness shear banding at the grain scale. A new finite element microstructure-based model is introduced to predict this strain localization during practical bending. The sheet metal is modelled as a grain aggregate, each grain having its own flow stress. After validation, the model is applied to the experimental results through an analysis of the critical plastic strain at the outer surface during bending of AA6016 sheet alloys. It correctly describes the respective influences of sheet thickness, grain size and shape, and work hardening. In particular the model brings out the primary importance of large-strain hardening and the spread of the flow stress distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.