Stochastic Subspace Identification methods have been extensively used for the modal analysis of mechanical, civil or aeronautical structures for the last ten years. So-called stabilization diagrams are used, where modal parameters are estimated at successive model orders, leading to a graphical procedure where the physical modes of the system are extracted and separated from spurious modes. Recently an uncertainty computation scheme has been derived allowing the computation of uncertainty bounds for modal parameters at some given model order. In this paper, two problems are addressed. Firstly, a fast computation scheme is proposed reducing the computational burden of the uncertainty computation scheme by an order of magnitude in the model order compared to a direct implementation. Secondly, a new algorithm is proposed to derive efficiently the uncertainty bounds for the estimated modes at all model orders in the stabilization diagram. It is shown that this new algorithm is both computationally and memory efficient, reducing the computational burden by two orders of magnitude in the model order.
In the last ten years, monitoring the integrity of the civil infrastructure has been an active research topic, including in connected areas as automatic control. It is common practice to perform damage detection by detecting changes in the modal parameters between a reference state and the current (possibly damaged) state from measured vibration data. Subspace methods enjoy some popularity in structural engineering, where large model orders have to be considered. In the context of detecting changes in the structural properties and the modal parameters linked to them, a subspacebased fault detection residual has been recently proposed and applied successfully, where the estimation of the modal parameters in the possibly damaged state is avoided. However, most works assume that the unmeasured ambient excitation properties during measurements of the structure in the reference and possibly damaged condition stay constant, which is hardly satisfied by any application. This paper addresses the problem of robustness of such fault detection methods. It is explained why current algorithms from literature fail when the excitation covariance changes and how they can be modified. Then, an efficient and fast subspace-based damage detection test is derived that is robust to changes in the excitation covariance but also to numerical instabilities that can arise easily in the computations. Three numerical applications show the efficiency of the new approach to better detect and separate different levels of damage even using a relatively low sample length.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.