This paper defines the notion of analogical dissimilarity between four objects, with a special focus on objects structured as sequences. Firstly, it studies the case where the four objects have a null analogical dissimilarity, i.e. are in analogical proportion. Secondly, when one of these objects is unknown, it gives algorithms to compute it. Thirdly, it tackles the problem of defining analogical dissimilarity, which is a measure of how far four objects are from being in analogical proportion. In particular, when objects are sequences, it gives a definition and an algorithm based on an optimal alignment of the four sequences. It gives also learning algorithms, i.e. methods to find the triple of objects in a learning sample which has the least analogical dissimilarity with a given object. Two practical experiments are described: the first is a classification problem on benchmarks of binary and nominal data, the second shows how the generation of sequences by solving analogical equations enables a handwritten character recognition system to rapidly be adapted to a new writer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.