The Gene Ontology Consortium (GOC) provides the most comprehensive resource currently available for computable knowledge regarding the functions of genes and gene products. Here, we report the advances of the consortium over the past two years. The new GO-CAM annotation framework was notably improved, and we formalized the model with a computational schema to check and validate the rapidly increasing repository of 2838 GO-CAMs. In addition, we describe the impacts of several collaborations to refine GO and report a 10% increase in the number of GO annotations, a 25% increase in annotated gene products, and over 9,400 new scientific articles annotated. As the project matures, we continue our efforts to review older annotations in light of newer findings, and, to maintain consistency with other ontologies. As a result, 20 000 annotations derived from experimental data were reviewed, corresponding to 2.5% of experimental GO annotations. The website (http://geneontology.org) was redesigned for quick access to documentation, downloads and tools. To maintain an accurate resource and support traceability and reproducibility, we have made available a historical archive covering the past 15 years of GO data with a consistent format and file structure for both the ontology and annotations.
PANTHER (Protein Analysis Through Evolutionary Relationships, http://www.pantherdb.org) is a resource for the evolutionary and functional classification of protein-coding genes from all domains of life. The evolutionary classification is based on a library of over 15,000 phylogenetic trees, and the functional classifications include Gene Ontology terms and pathways. Here, we analyze the current coverage of genes from genomes in different taxonomic groups, so that users can better understand what to expect when analyzing a gene list using PANTHER tools. We also describe extensive improvements to PANTHER made in the past two years. The PANTHER Protein Class ontology has been completely refactored, and 6101 PANTHER families have been manually assigned to a Protein Class, providing a high level classification of protein families and their genes. Users can access the TreeGrafter tool to add their own protein sequences to the reference phylogenetic trees in PANTHER, to infer evolutionary context as well as fine-grained annotations. We have added human enhancer-gene links that associate non-coding regions with the annotated human genes in PANTHER. We have also expanded the available services for programmatic access to PANTHER tools and data via application programming interfaces (APIs). Other improvements include additional plant genomes and an updated PANTHER GO-slim.
Phylogenetics is a powerful tool for analyzing protein sequences, by inferring their evolutionary relationships to other proteins. However, phylogenetics analyses can be challenging: they are computationally expensive and must be performed carefully in order to avoid systematic errors and artifacts. Protein Analysis THrough Evolutionary Relationships (PANTHER; http://pantherdb.org) is a publicly available, user‐focused knowledgebase that stores the results of an extensive phylogenetic reconstruction pipeline that includes computational and manual processes and quality control steps. First, fully reconciled phylogenetic trees (including ancestral protein sequences) are reconstructed for a set of “reference” protein sequences obtained from fully sequenced genomes of organisms across the tree of life. Second, the resulting phylogenetic trees are manually reviewed and annotated with function evolution events: inferred gains and losses of protein function along branches of the phylogenetic tree. Here, we describe in detail the current contents of PANTHER, how those contents are generated, and how they can be used in a variety of applications. The PANTHER knowledgebase can be downloaded or accessed via an extensive API. In addition, PANTHER provides software tools to facilitate the application of the knowledgebase to common protein sequence analysis tasks: exploring an annotated genome by gene function; performing “enrichment analysis” of lists of genes; annotating a single sequence or large batch of sequences by homology; and assessing the likelihood that a genetic variant at a particular site in a protein will have deleterious effects.
The Alliance of Genome Resources (Alliance) is a consortium of the major model organism databases and the Gene Ontology that is guided by the vision of facilitating exploration of related genes in human and well-studied model organisms by providing a highly integrated and comprehensive platform that enables researchers to leverage the extensive body of genetic and genomic studies in these organisms. Initiated in 2016, the Alliance is building a central portal (www.alliancegenome.org) for access to data for the primary model organisms along with gene ontology data and human data. All data types represented in the Alliance portal (e.g. genomic data and phenotype descriptions) have common data models and workflows for curation. All data are open and freely available via a variety of mechanisms. Long-term plans for the Alliance project include a focus on coverage of additional model organisms including those without dedicated curation communities, and the inclusion of new data types with a particular focus on providing data and tools for the non-model-organism researcher that support enhanced discovery about human health and disease. Here we review current progress and present immediate plans for this new bioinformatics resource.
To increase the utility of Gene Ontology annotations for interpretation of genome-wide experimental data, we have developed GO-CAM, a structured framework for linking multiple GO annotations into an integrated model of a biological system. We expect that GO-CAM will enable new applications in pathway and network analysis as well as improving standard GO annotations for traditional GO-based applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.